

Boston Medical Library in the Francis A. Countway Library of Medicine ~Boston

 Prosented lyy Mrill Wyman M.D.

PROPERTY OF THE CAMBRIDGE PUBLIC LIBRARY, Doposited in the Bosto Medical Libramy Ly order of the Trastees.

Date 能 $\$ 31904$

$$
A N
$$

ES SA Y

UPON

SINGLE VISION WITH TWO EYES:

TOGETHER WITH
EXPERIMENTS
$A N D$

- BSERVATIONS

$$
0 \mathrm{I}
$$

SEVERAL OTHER SUBJECTS IN OPTICS.

By WILLIAM CHARLES WELLS, M. D.

$$
\begin{aligned}
& \text { L O N D O N: } \\
& \text { PRINTED FOR T. CAmEL, IN THESTRAED. } \\
& 5792
\end{aligned}
$$

いるご

Digitized by the Internet Archive in 2011 with funding from
Open Knowledge Commons and Harvard Medical School
http：／／www．archive．org／details／essayuponsinglev00wéll

CONTENTS.

ES SA Y

UPON

sINGLE VISION WITH TWO EYES.

PAR TI.

Of the different Opinions concerning Single Vision with. two Eyes; and principally of thole of Dr. Smith and Dr. Reid, - p. I.

PA RT II.

Of a new Theory respecting Vifible Direction, and of a Solution bonce derived of the 2ueftion, why Objects are feer fingle with two Eyes, - - p. 34°

PA R T III.
Of some Consequences from the foregoing Theory of Objects being Seen jingle with two Eyes; together with the Explanation of Several other Phenomena of Vifon, p. 63 . EX.

EXPERIMENTS and OBSERVATIONS

 ON
SEVERAL SUBJECTS IN OPTICS.

ARTICLE I.

On Viable Position and Visible Motion, p. 85 .

ARTICLE II.

On a fuppofed Consequence of the Duration of Impreffions upon the Retina; and the Effects of accurate Virion being confined to a Jingle Point of that Membrane; p. 106.

ARTICLE LI.

On the Connection between the different refractive States of the Eyes, and the different Inclinations of the Optic Axes to each other, - . - p. 116.

ARTICLE IV.

On the Limits of Perfect or Define Virion, p. $13^{\text {t. }}$

A N

E S S A Y

UPON-

SINGLE VISION WITH TWO EYES.

PARTI.

Of the different Opinions concerning fingle Difon witb two Eyes; and principally of thofe of Dr. Smith and Dr. Reid.

THE end I have chiefly in view, in this Effay, being to offer a new folution of the queftion, why objects are perceived fingle with two eyes, I think it incumbent upon me, in the firft place, to fhow, that none of the opinions I have met with upon this. fubject, can be admitted as juft.

Thefe opinions, or fuch of them at leaft as have gained any confiderable reputation, B may

(2)

may be reduced into two claffes. The firft comprehends thofe of Galen, Alhazen, Rohault, Dr. Briggs, and Sir Ifaac Newton, all of whom have regarded the queftion I have mentioned as equivalent to the following one: Whence comes it, that the mind fhould be affected with only one perception from two impreffions upon the external organs of fight, fince either of thofe impreffions is, of itfelf, fufficient to produce a fimilar perception? Their univerfal anfwer has been: Becaufe the two impreffions are united before they are communicated to the mind. And the only difference among thefe authors, has been with refpect to the manner in which fuch an union takes place. To the fecond clafs are to be referred the opinions of thofe, who hold it as certain, that an object is feen fingle by both eyes, becaufe it is feen by each of them in the fame external place ; and who profefs to point out fome law, or conftant rule of vifion, from which this famenefs of place is to be derived as a necceffary confequence, Agmilonius, I believe, firf gave this

(3)

this view of the queftion, which has fince been adopted by Dechales, Dr. Porterfield, Dr. Smith of Cambridge, and Dr. Reid of Glafgow.

In onperition to the opinions of the firft clafs, more efpecially as they have been repeatedly examined by others, I think I need only fay, that they muft all be confidered as mere conjectures, founded upon certain fuppofed changes in the brain and nerves, the exiftence of which it is impoffible, from the nature of the parts, either to demonftrate, or to refute by experiments; and that no one of them, though admitted to be true, is yet fufficient to explain the phenomena on account of which it was framed.

The opinions of the fecond clafs being built, as their authors think, upon experiments and obfervations, both allow and demand a more accurate inveftigation. I fhall proceed, therefore, to examine fuch of them as I am acquainted with, beginning with that of Aguilonius; and what I \{hall obferve concerning it will apply alfo B3 to
to thofe of Dechales and Dr. Porterfield, who have done little more than copy what he has faid.

If a line be drawn through the point of the mutual interfection of the optic axes, parallel to the interval between the eyes; Aguilonius calls it, from its office, the boropter; and if through this line, a plane be made to pafs at right angles to that of the optic axes, he names it the plane of the boropter: After defining thefe terms he afferts, that, by a law of our conftitution, all bodies which we fee with one glance or look, whatever are their real places, appear to each eye to be fituated in this plane.And if this be granted to him, he eafily and fatisfactorily fhows, why fome fhould be feen fingle with two eyes, and others double. For fince, according to a fecond opinion maintained by him, and not contradicted, I believe, by any other writer upon vifion, the two lines of direction, in which an object is feen when we employ both eyes, can meet each other only in one point, it follows, that all bodies which are 4
really

(5)

really fituated in the plane of the horopter, muft neceflarily appear fingle, as the lines of direction in which any one of them is perceived by the two eyes, coincide in that plane, and no where elfe; and that all bodies, which are not fituated in the plane of the horopter, muft as neceflarily appear double, fince, in this cafe, the lines of their vifble directions interfect each other, either before or after they pafs through it.*

Againft the truth of this explanation, only one argument need be offered.Were the viifble places of all bodies to be contained in the plane of the horopter; thefe would appear of magnitudes proportional to the angles which they fustend at the eye. A finger, for inftance, held near to the face, would feem as large as the part of a remote building it might conceal from the fight. But, as this is contrary to experience, the principle from which it is derived, mult be rejected, together with all its confequences. To Aguilonius, however, the merit is due of being the firf, who fo

[^0]
(.6)

fo far generalifed the phenomena of fingle and couble vifion, as to obferve, that thofe objects alone are feen fingle, which are really fituated in the plane of the horopter.

The opinion of Dr. Smith is the next in the order of time. *'s If it "s be afked (fays that author) why in "feeing with both eyes we do not al*6 ways fee double, becaufe of a double fenss fation, I think it is fufficient to fay, "that in the ordinary ufe of our eyes, ${ }^{46}$ in which the pictures of an object are "s conftantly painted upon + correfpond" ing places of the retinas, the predomi" nant

* Compleat Syfem of Optics. Vol. I. p. 48.
f Dr. Smith gives the following definition of corre/ponding points. "When the optic axes are parallel or meet in a point, 4 the two middle points of the retinas, or any points which are as equally diftant from them, and lie on the fame fides of them, * either towards the right hand or left hand, or upwards or If downwards, or in ary oblique direction, are called correfond" ing points." Vol. I. p. 46. According to this definition, points correfpond which have a certain agreement in fituation. No contradiction is, therefore, implied in this fyftem by faying, that an object may appear fingle, though its pictures fhould fall upon points which do not correfpond. Dr. Reids definition of the fame term is very different.

\{ 7 \}

"f nant fenfe of feeling has originally and
" conftantly informed us that the object is " fingle. By this means our idea of its " outward place is connected with both " thole fenfations, as is manifent by its " appearing in two places when its pictures "e are not painted upon correfponding places " of the retinas; which is only a direct "s confequence arifing from our general ha" bit of feeing." Should any one now enquire whence it is, that, to produce fingle vifion, all men agree in directing their eyes toward the object in fuch a manner, as to receive its piEtures upon correfponding points of the retinas, fince cuftom might have connected the fenfations of any othen two points with the information of its unity from feeling :* This anfwer may be givea in the words of Dr. Smith : 中" When we " view an object fteadily, we have acquired " a habit of directing the optic axes to " the

[^1]
(8)

- the point in view; becaufe its pictures " falling upon the middle points of the "s retinas, are then diftincter than if they ©f fell upon any other places; and fince " the pictures of the vihole object are equal
" to one another, and are both inverted
" with refpect to the optic axes, it follows
" that the pictures of any collateral point
"s are painted upon correfponding points of
"s the retinas."
Such is the folution which Dr. Smith has given of this celcbrated queftion, and fuch the reply, which his general account of vifinn furnifhes to one objection againft it. But there are others which, in my opinion, cannot be fo eafily repelled. Before I offer thefe however, I beg leave to remark, that although it were proved, as I think it may be, that he is miftaken in the fact of objects appearing fingle, when their piAtures fall upon the middle or other correfponding points of the retinas, fill the truth of what is peculiar to him * of the folution he

[^2]he gives, might remain umnaisen.Objects, it may be faid, are conftantly feen fingle when we direct our eyes to them in a particular manner. Their pictures muft, confequently, in every fuch cafe, fall upon the fame places of the retinas; and whether thefe be correfponding or not, the unity of the vifible appearances will be owing to the connection, which has uniformly been obferved between the fenfations of thofe places, and the information from feeling, that the objects which caufe them are fingle. What I fhall fay, therefore, upon his opinion, will tend to how, that, admitting the fact refpecting correfponding points to be true, his explanation of it ought however to be rejected.

For firft, it may be obferved, that, if we are taught by feeling to fee objects fingle,
between particular fenfations of fight, and the informations of touch. But I no where find it mentioned in the works of that author; and I even think it probable, that he purpofely avoided treating of the queftion, as he found, that the folution of it, which naturally flowed from his principles of vifion, was with difficulty to be reconciled to other conclufions he had derived from the fame fource.

$$
\mathrm{C} \text { not- }
$$

(10)

notwithftanding a fenfation in each eye, the informations of the former fenfe ought to be uniform, or elfe one fet of vifual appearances would be affociated with different reports from feeling, and no certain mark afforded us which of them we fhould truf. Now Dr. Smith himfelf is obliged to confefs, that we fometimes feel double, "as " in the dark, when a button is preffed " with two oppofite fides of two contiguous " fingers laid acrofs; for this reafon, that " thofe oppofite fides of the fingers have " never been ufed to feel one but always " two things at a time." * He adds, "We " have learned, therefore, by experience of " both fenfés compared together, to make " their informations confiftent with each " other." Here then we find him to allow, that feeling is not always the predominant, but fometimes the inferior fenfe ; that its informations are not conftant and original, but changeful and derived; pofitions directly

[^3]
(11)

rectly contrary to thofe he had immediately before maintained. But in the firft inflance of difference between the informations of the two fenfes, what rule had we for determining which was the moft worthy of credit? How does a blind man correct his errors of touch? If the button be felt double, becaufe preffed by two parts not accuftomed to feel the fame thing at the fame time, there muft have been a period in the life of every perfon, when a body preffed by any two parts would have been felt double, by three parts triple, and fo on. Nor could light have corrected thofe deceptions, if they can be called fuch ; for every thing by the fame hypothefis muft then have allo been feen double. How came we therefore, both to feel and fee things fingle? Surely not by comparing the informations of the two renfes together.

But Jecondly; were we to grant, that the fenfe of touch has originally and conftantly informed us that objects are fingle, it would not follow, that we are thence taught to fee them alfo fingle. For fince the place,

$$
\mathrm{C}_{2} \quad \text { which }
$$

(12)

which an object feems to either eye to poffefs, manifeflly depends both upon its apparent diftance, and its apparent direction from that eye, if vifible place be, in the language of Dr. Smith, only an idea of real or tangible place, vifible direction muft bear the fame relation to tangible direction; a confequence of which is, that we can never have a more accurate knowledge of the direction, in which an object may lie from any part of our bodies, by fight than by touch. Facts however prove the contrary. Let any perfon, for inftance, taking a pin in his hand, endeavour, without looking, to bring its head upon a level with either of his eyes; and there are many chances to one but he will fail in the attempt, of which fight will inform him, when he turns his eye to the object. This to me is a convincing argument, that external bodies are not feen in certain directions, becaufe they have been previoufly felt in them; and confequently, that vifible place, of which vifible direction is a component part, is not merely a reprefentative of the place perceived

! 13)

ceived by touch. But if the place, in which an object appears to each eye eparately, does not entirely depend upon any leffon from feeling, the inference is, that when an object appears in one and the fame place to both eyes together, neither is this effect to be attributed folly to the informations of that fenfe.

Thirdly; in whatever direction an object may appear to either eye, it certainly cannot be feen in the fame place by both, except at forme point common to the two directions. Dr. Smith acknowledges this, and fays, * that when an object is perceived fingle with both eyes, it is feen at the mutual interfection of the two vifual rays; the vifible direction of any object coinciding, according to him, with the vifual ray, or the principal ray of the pencil which flows from it to the eye. Should we then even allow, that all we know by fight of the places of bodies has been borrowed from feeling, it will fill be leafy to flow, that the rule of virion for each eye, which he
has
Vol. II. Remarks, p. 86.

(14)

has derived from fuch experience, that of our feeing objects in the directions of their vifual rays, is inconfiftent with many of the phenomena of fight with two eyes; and confequently, that he has left unremoved the chief difficulty of his fubject, which was to explain the fingle appearance of objects to both eyes, from thofe laws, or rules of vifion, which affect each of them fingly. For it is a well known fact, that if two bodies of the fame fhape, fize, and colour, be placed, one in each optic axis, they appear but as one body, provided they be at equal diftances from the eyes. Agreeably to the theory of our feeing objects in the direction of their vifual rays, this cannot happen, except the united body appear at the interfection of the optic axes. Dr. Smith accordingly, * maintains that it does. Now, in the firft place, I appeal to experiment for a direct proof that it does not; and in the fecond, I obferve, that, as the two bodies in the optic axes appear as one, whather they be fituated within or beyond

[^4]
(15)

the concurrence of thofe lines; and as a right line joining the bodies, and extended both ways, appears at the fame time to the fight as a rightline ; it follows, upon admitting the fact which I have denied, that all objects in the plane of the optic axes which are feen in one ponition and ftate of the eyes, however near to $u s$, or however remote they may in reality be, muft appear to be equally diftant, or rather in a line drawn through the concourfe of the optic axes, parallel to the interval between the eyes, and named by opticians the boropter. Again, if a rightlinebe made to pafs through any part of the plane of the optic axes, at right angles to it, the portions above and below this plane are perceived to be in the fame right line with the point which is fituated in it, and the whole appears perpendicular to the plane. But the point in the plane is feen, by the laft article or propofition, in the horopter; the whole, therefore, of the perpendicular line muft be feen in a plane paffing through the horopter at right angles to that of the optic axes; or in other

(16)

words, in the plane of the horopter, in which confequently all bodies will have their vifible places. But this was the very opinion of Aguilonius, to which he was probably led by a fimilar train of reafoning; though, as a teacher, he might choofe rathen to ground it immediately upon an origimmal law of our constitution.

It is probable, however, that Dr. Smith did not perceive the conclufions which might be drawn from his doctrine of objects being feen in the directions of their vifual rays, fince he has no where fpoken of them. At any rate, it is manifeft he did not admit them, as he has mentioned the following circumftance as a fact,* to which they cannot be, reconciled; that, when an object is feen double, both its apparent places are fituated between its real place, and the mark at which we look. For, if this were jut, together with what he has elfewhere advanced, phenomena ought in many cafes to be obferved, very different from thole which are in truth found to exit. Thus, for

[^5]for example, if a right line be any where placed in the plane of the optic axes, it follows, from what he has faid in one part of his book; that thofe points of it, through which the axes pafs, mult be feen united at the mark we look at; the axes croffing each other there; and from what I have juft quoted, that every other point muft be feen by each eye between its real place and that mark. The appearances, therefore, of all the points, if they do not lie disjoined; but are connected together in fome orderly manner; will be arranged in the forms, either of two curves, both paffing throughx the interfection of the optic axes, or of four fight lines meeting one another at that point. If the right line be placed nearer to the face than the mark we look at, the apparent lines; whether curved or ftraight, will approach toward us from their common point, but recede from us, if the real line be fituated beyond the mark. Such are the phenomena which ought to follow upon the admiffion of thele two parts of Dr. Smith's theory of vifion with two eyes, bat

(18)

which are not found to exift in nature. Aguilonius was at leaft confiftent when he maintained, that all objects are feen in the plane of the horopter; while Dr. Smith, by deferting that opinion in part, feems only to have involved himfelf the more deeply in error.

Having now faid what, I hope, will be thought fufficient to fhow, that the reafon given by Dr. Stiith, for our feeing objects fingle with both eyes, is neither grounded on well-attefted facts; nor adequate to the explanation of the phenomena obferved, I pafs to the examination of the opinion of Dr. Reid.

As this neither refts upon, nor includes any new fact in vifion, I need only mention, in order to give an account of it,* that its author maintains with Dr. Smith, that an object is feen in the fame place with both eyes, and confequently fingle, when its pictures fall upon the centres of the retinas, or upon points in them, which are fimilarly fitmated with refpect to the centres; but differs

[^6]
(19)

differs from him in this, that he makes the property to be original, by which any two places in thofe membranes exhibit only one object, while Dr. Smith derives it altogether from cuftom. \dagger

In my examination of the opinion of Dr. Smith, I took occafion to remark, that the truth of what difinguifhed it from all others might remain unfhaken, though it were proved, that objects do not appear ingle, when their pictures occupy any of the correfponding points of the two retinas, fince cuftom might have affociated the perceptions of touch, with the fenfations of any other parts whatfoever of thofe membranes. The fame obfervation will not apply with equal juftice to the opinion of Dr. Reid. On the contrary, could it be fhown, that the places of the two retinas, which repre-

+ They differ alfo with refpect to the meaning of a term ; Dr. Smith calling correfonding points, fuch as have the pofition juft mentioned, whether they reprefent objects fingle or not; whereas Dr. Reid fays, that thofe points correfpond, whatever their pofition maj be, which reprefent objects fingle ; and he appears to me not always to attend to the double ufe of the fame term? when hef fpeaks of the opinions of Dr. Smith.
D_{2}
fent
fent an object fingle when each receives itş picture, are not the contres, or fuch others as are fimilarly fituated, an obvious inference would be, that the fingle appearance of the object is not occafioned by a property in thote places, beftowed upon them for this fpecial purpofe by nature; it being reafonable to expect, that fuch a property thould be found, if any where, in thofe parts of the retinas which are the moft like to each other. I have, therefore, referved till now, the obfervations which have occurred to me upon this fubject, and which, when ftated, muft, at leaf, raife fome doubt concerning what has been regarded as true by Dr. Smith and Dr. Reid, and by almoft every other writer on vifion, fince the time of Kepler.

Anatomifts have commonly taught, that the centres of the fipheres, to which the cornea, the ball of the eye, and the two portions of the cryft.line belong, are all placed in the fame right line, hence called the optic axis, and that this being produced both ways, paffes through the centres of

(21)

the cornea and retina, confidered as furfaces. Opticins, on their part, obferve, that an object appears fingle to both eyes, when the axis of each is accurately direct-d to it ; from which they infer, that the centres of the retinas agree in fuggeeting but one object, thoush each receives its picture. Again; fince it is known by experience, that, while any object is feen fingle, to which the optic axes are turned, others at the fame diftance from the eyes likewife appear fo; and fince the pictures of there lateral objects fall upon points in the two retinas, equidiftant from their centres, and both upon the fame fide, that is, both to the right or left of the centres, or both above or below them, opticians conclude, that every two places of the retinas, which are fimilarly fituated with refpect to the centres, muft alfo agree in exhibiting but one object, though pictures are received by both.

But the whole of this reafoning is built upon a circumfance in the fabric of the eye, which has been fhown by fome of the
moft eminent anatomifts not to have place, For Varolius * long ago obferved, that the cryfaline is not fituated in the middle of the eye, but more inwardly; and the accurate $\mathrm{Zinn}+$ has more lately mentioned, that if the eye be divided into a right and left half, the centre of the cryftaline will be found in the inner portion. Haller \ddagger confirms this fact ; and Winflow's || cbfervation, that the centres of the pupil and iris do not coincide, but that the former is nearer to the nofe than the latter, is connected with it ; fince both Zinn and Haller agree, that the centre of the pupil is placed in the axis of the cryftaline, while that of the iris is evidently in the common axis of the comea and globe. Now, a confequence of this pofition of the cryfaline is, that, contrary to what I beiieve is univerfally maintainet, no ray of light whatfoever can pars unbent to the retina from the atmoiphere, or any other medium differing in re-
fractive

[^7]
(23)

fractive power from the aqueous humour. If, then, the line joining the centres of the cornea and globe of the eye be what is called the optic axis, and if it be true; that objects appear fingle when we direct both thefe axes to them, it muft be evident, to fuch as are acquainted with the common rules of optics, that the pictures of thofe objects do not fall upon the centres of the retinas, but more internally ; and, therefore, that the centres and all the other points of thofe membranes, which by the prefent fyifem are fuppofed to reprefent objects fingle, do in fact exhibit them double.

It will be faid here, perhaps, that the line * paffing from each eye, which we turn to objects when we fee them fingle, is not
a pro-

[^8]a production of the common axis of the cornea and globe, but forme other, difpofed in fuch a manner, that the pictures of thole objects are received by the centres of the retinas: I anfwer; I readily grant the poffibility of the thing, but I affert at the fame time, that we have no proof of it, which is a fufficient reason for rejecting every conclufion that depends upon its truth.

Admitting, however, that objects are reprefented fingle, when their pictures fall upon the centres of the retinas, or upon any other two points which are equally diftant from the centres, and both upon the fame fide, it appears to me, notwithftanding, to' be in violation of all analogy, to afcribe this effect, with refpect to the points, at leafs, on the right and left fides of the centres, to any peculiar property which they poftefs from nature. For when anaomits find, in a nervy fpecies of animals, organs fimilar in ftructure to thofe of others they are already acquainted with, they impmediately conclude, that they are alpo fimi-

$$
(25)
$$

lar in regard to their ufe. In animals of the fame fpecies, they believe with certainty; that the organs they fee in one have the fame properties, as the correfponding organs of another; and, if it be poffible, they attribute with greater certainty the fame properties to two organs of the like kind, which are found in the fame individual: Such is the influence of the rule, that refemblance of property is implied by refemblance of ftructure. Now it is an univerfal fact; that if an animal be divided into a right and left half, the correfponding parts of thofe organs, which exift in pairs; are found at equal diftances from the plane of partition. Thus, for inftance, in refpect to the eyes, the two optic nerves penetrate their outward coat at the fame diftance from this plane. Their mufcles, blood-veffels; and every other of their component parts and appendages, are arranged in the like manner; thofe neareft to the dividing plane, or the innermoft, in the one, being fimilar in ftructure to the innermoft in the other, the sutermoft to the outermoft, and the inter-
mediate
mediate to the intermediate, It is furely, therefore, natural to expect, that fuch parts fhould alfo be fimilar in their properties; and we in fact find this fimilarity to exift, wherever it can be clearly afcertained what the properties are. Every perfon, for example, admits, that the internal ftraight mufcle of the right eye performs the fame office, with refpect to that eye ${ }_{2}$ as the other internal ftraight mufcle does with refpect to the left eye. What judgment are we then to form of the opinion of Dr. Reid, which attributes the fame original properties, or rather the joint poffeflion of one original property, to places in the retinas fituated ar unequal diftances from the general plane of partition; which makes an external point in one to correfpond, in ufe, with an internal point in the other, and this too by a principle implanted by nature? If fuch things exift, they may, at leaft, be faid to ftand oppofed to a moft extenfive analogy.

To thele arguments, a priori, againft the opinion of Dr. Reid, I hall now add others,
which
which are derived from a confideration of its confequences.

Firft; Since vifible place, as was formerly obferved, includes in it vifible diftance, it is evident that, if both eyes, by virtue of an original property, fee an object in the fame place, diftance muft alfo be originally perceivable by fight. Dr. Reid, * however, has himfelf fo ably fhown, that we would never have acquired, by means of our eyes, any knowledge of diftance, unlefs they had been affifted by the fenfe of fecling, that I forbear to fay any thing more upon this head, than that the exiftence of no property can be admitted, which leads to the conclufion I have fated.

Secondly; If diftance be not immediately perceivable by fight, the only manner, in which an original property of the eyes can affect the vilible places of bodies, is by occafroning them to appear in certain directions. Now Dr. Reid maintains, \uparrow that every external point is feen in the direction of a line

[^9]E2 paffing

(28)

paffing from its picture on the retina, through the centre of the eye. If, therefore, this direction be the fame as that fuggefted by the original property fo often mentioned, the latter law is merely another expreffion for the former, and ought to be rejected as fuperfluous. If it be different, and fhould the two laws exift together, objects feen with both eyes mightfometimes appear quadruple, fometimes triple, but never fingle. Were they to exift fucceffively, one when we employ one eye, the other when both, an object, though at reft, fhould always appear to move when viewed alternately by one and by both eyes; neither of which conclufions is agreeable to experience.

Tbirdly; To fhow in a different way, and one perhaps more eafily underfood, that the opinion of Dr. Reid is not confiftent with the phenomena of vifion it oughty to explain, I fhall fuppofe an experiment to be made upon a perfon who fquints. But I muft premife, that it appears, from the
obfervations of Dr. Jurin * and him= felf, + that all fuch perfons have one eye of a weaker fight than the other; that when both eyes are open, the weaker is turned away from objects, which are attentively viewed; but that when the ftrong eye is clofed, the weaker is pointed to objects, exactly as the former would be in the fame fituation; and that it likewife perceives them in fimilar directions. Let now the ordinary pefition of the perfon's eyes, upon whom the experiment is made, be fuch, that the optic axes interfect each other about an inch or two from the face; and while the other is clofed, let the flame of a candle be placed in the axis of the weak eye, which I Thall call the left, at the diftance of fome feet from it, and on the right fide of the body. The flame will confequently appear in the fame direction, as if his eye had no fault, and will be feen on bis right, where it is in reality fituated. Both eyes retaining the fame pofition with refpect to his head and each other, let the weak

[^10]
(30°)

weak cye be afterward chut, and the right opened, and let another object be placed in the axis of the latter, an opake body being at the fame time fo difpofed, as to hide from it the candle which is in the axis of the left eye. This object in the right axis will confequently appear on the left fide. Now, fince the two objects, which have been thus viewed feparately, are fituated, one to the -ight, and one to the left; and fince they have been alfo feen in thofe pofitions, their vifible places muft be two, as- well as their tangible, and muft be remote from each other. How then fhould thefe objects appear, if, inftead of being viewed alternately, each by the eye in the axis of which it is placed, they were feen by the two together; the pofitions and internal fates of the eyes being in both cafes the fame? Dr. Reid muft anfwer; They will poffefs but one vifible place, fince their pictures fall upon the censres of the two retinas, points endowed with the original property of reprefenting objegts fingle. But where is this one place

(3^{1})

to be found ? In the axis of the right eye, or in that of the left, or between the two? In any of thefe cafes, or in any other that can be imagined, the law of vifible direction, fo much infifted upon by Dr.Reid, that objects appear in the perpendiculars to their pictures upon the retina, and in truth every other law of vifible direction hitherto publifhed, muft be fufpended with refpect to one or both eyes; unlefs, indeed, the united object be referred to the interfection of the optic axes, about an inch or two from the face. This, I believe, Dr. Reid would not readily admit; but if he fhould, another cafe of fquinting may be imagined, in which the optic axes recede from each other, and where the fame reafoning will apply without the poffibility of its force being thus eluded. It now remains for me to mention, that the experiment here fated by the way of fuppofition, in which the optic axes crofs each other near to the face, was actually made by Dr. Reid, with this refult, that the two objects appeared in different places, when feen by both eyes together; and
ând that the other experiment, in which the optic axes are fuppofed to diverge, was made by myfelf, with a fimilar event: Dr. Reid, however, inftead of being led, by the termination of his experiment, to impute a fault to the principle from which he had expected a different one, concluded from it_{j} that there was fomething unnatural, befide the fquinting, in the perfon's eyes, upori whom it was made; though it had been previoully afcertained; that objects appeared in the ordinary manner to each of them, when feparately employed:

My examination ofthe fecond clafs of opinions, refpecting the caule of the fingle appearance of objects to" two eyes, being finifhed, fome perfon, perhaps, will now fay; Granting that no error can, at firft fight, be fhown in your arguments againfe thofe of Dr. Smith and Dr. Reid, is it not a fuffie cient reafon for believing them fallacious, that they prove too much ? If objects appear fingle neither from cuftom, nor an original property of the eyes; have we not an effect without a caufe, and muft there
not be fomething wrong in the facts or reafoning which lead to fuch a conclufion? The anfwer I make is as follows: Since vifible place contains in it both vifible diftance and vifible direction, it is not neceffary thit the fingle appearance of an object, to both eyes, Thould depend altogether either upon cuftom, or an original principle of ourr conftitution; fur its vifible diftance to each eye may be learned from feeling, and its vifible direction be given by nature : in which cafe, the unity of its place to the two eyes, will be owing to neither of thofe caufes fingly, but to a combination of both 3 and this I regard as a fufficient reply.

> THE END OF PARTI。

E S S A Y

UPON

SINGLE VISION WITH TWO EYES.

PARTII.

Of a new Theory refpecting Vifible Direction, and of a Solu. lution bence derived of the Quefion, why Objects are feen fingle with two Eyes.

I NOW proceed to offer a new opinion, why objects are feen fingle with two eyes; or in other words, why they appear in the fame place to both, this being the light in which I view the fact to be explained.

In every part of natural philofophy, accidents often lead to difcoveries, which reafon alone might not eafily have reached. Under this cover I hope to fhelter myfelf from the charge of prefumption, in venturing
turing to give the folution of a problem, upon which the talents of many perfons of great learning and genius, have been unfuccefffully employed; for should I prove more fortunate than fuch men have been, this muft be attributed to the knowledge of a circumfance I obferved by chance, iss repeating fome very common experiments.

The vifible place of an object being compoled, as I have already feveral times remarked, of its vifible diftance and vifible direction, to how how it may appear the fame to both eyes, it will be neceffary to explain, in what manner the diftance and direction, which áre perceived by one eye, may coincide with thofe which are perceived by the other: and firft with refpect to the difiance.

In judging of diftance by fight, we frequently make confiderable miftakes, even when the objects are not very remote; but no perfon, I believe, has ever obferved, that while an object feemed to one of his eyes at a certain diftance, it has appeared to the other to be at a different diftance, and from this circumfance alone has been feen double;
or, to exprefs the fame thing in another way, that while the vifible appeararce of an object to one eye, covered the vifible appearance of the fame object to the other eye, the two appearances did not feem entirely to coincide, and make one, but were feen feparate by the two eyes. I do not ftop to give the reafon of this fact, which muft be plain to thofe who are acquai ted with Biihop Berkelcy's theory of vifible diftance ; but proceed to mention, that the difficulty in finding a true and fufficient caufe for the union of the two vifible places of one or two objects to two eyes, muft therefore confift altogether in fhowing, in what manner the two apparent directions may coincide, confiftently with the attending phenomena.

Since Kepler's great difcovery of the feat and manner of vifion, there have been, as far I know, only two theories offered refpecting the apparent directions of objects. One is, that they are perceived in the direciion of lines paffing from their pictures on the retina, through the centere of the

(37)

eye; * the other, that their apparent directions coincide with their vifual rays. But both of thefe theories are inconfiftent with the phenomena of fingle vifion with twa eyes. For according to neither of them can: an object, placed at the concourfe of the optic axes, be feen fingle, unlefs we have a_{1} moft accurate knowledge of its diftance ; nor will either admit two objects to be feen. as one, which are fituated in the optic axes, whether on this fide, or beyond where they: meet, unlefs the united object be referred. by fight to their very peint of interfection; both of which conclufions a:e contradicted by experience. It is evident, therefore, that fome other theory of vifible direction is required, which fhall not be liable to thefe objections ; and fuch a theory, I hope, I Thall bring forward in the folluwing propofitiuns,

* Mr. D'Alembert has faid (Opufules Mathematic :es, Tom. ${ }^{\text {F }}$ p. 265) that all optical writers before him had regarded it as an axiom, that every vifual point is feen in the direction of its vifual ray. But the affertion is not well founded. For Kiepler long ago taught (Paralipomema in Vitellionem, p。 I73) that objects are perceived in lines paffing from their pietures upon ri.e retina, through the centre of the +ye ; in which he was followed by Dechales and Doctor Porterfield ; to the latter of whom Dr. Reid improperly attributes the difcovery of the samefuppored law.
fitions, after mentioning the meanings which I affix to feveral teims I fhall frequently employ.

EXPIANATION OFTERMS.

1. When a fmall object is fo placed with refpect to either eye, as to be feen more diftincly than in any other fituation, I fay it is then in the optic axis, or the axis of that eye; and if another fmall body be interpored between the former and the eye, fo as to conceal it, and if a line joining the two be produced till it falls upon the cornea, I call this line the optic axis, or the axis of the eye; leaving for future determination the precife point of the cornea it falls upon, or what part of the retina receives the picture of an object which is placed init.
II. When the two optic axes are directed to a fmall object not very diftant, they may be conceived to form two fides of a triengle, the bafe of which is the interval between the points of the corneas, where the axes enter the eyes; but if the object

(39)

be very diftant, then they may be fuppofed to be two fides of a parallelogram, whole bafe is the fame interval. To avoid circumlocution, I fhall call this interval the vijual bafe.
III. If there be drawn a line from the middle of the vifual bafe, through the point of interfection of the optic axes, or parallel to them, if they be parallel to each other, I name it the common axis. 承 This term I believe was invented by Alhazen; but with him it fignified a hine drawn from the centre of the junction of the optic nerves, through the middle of the interval between the centres of the retinas. Such

[^11]$$
(40)
$$

Such a line was confequently immoveable. As the term, however, is not in modern ufe, no miftake can arife from confounding the two meanings; and the reafon will foon be feen, why I employ it in the fenife I have mentioned. Thofe who are acquainted with the writings of the older opticians will perceive, that I give it nearly the fome fignification as they did to their common radius.

PROPOSITION I.

Oojects situatel in the Optic Axis, do not appear to be in that
Line, but in the Common Axis.
EVERY perfon knows, that, if an object be viewed through two fmall holes, one applied to each eye, the two holes appear but as one. The theories hitherto inverted af ford two explanations of this fact. According to A ailonius, Dechales, Dr. Porterfield and Dr. Sinith, the two holes,
ot rather their borders, will be feen in the fame place as the object viewed through them, and will confequently appear united, for the fame reafon, that the object itfelf is feen fingle. But whoever makes the experiment will diftinctly perceive, that the united hole is much nearer to him than the object; not to mention, that any fallacy on this head might be corrected by the information from the fenfe of touch, that the card, or other fubftance, in which the holes have been made, is within an inch or lefs of our face. The other explanation is that furnifhed by the theory of Dr. Reid. According to it, the centres of the retinas, which in this experiment receive the pictures of the holes, will, by an original property, reprefent but one. This theory, however, though it makes the two holes to appear one, does not determine where this one is to be feen. It cannot be feen in only one of the perpendiculars to the images upon the retinas, for no reafon can be given why this law of vifible direction, which Dr. Reid thinks eftablifhed beyond difpute, if it opeG rates
tates at all, fhould not operate upon both eyes at the fame time ; and if it be feen by both eyes in fuch lines, it muft appear where thofe lines crofs each other, that is, in the fame place with the object viewed through the holes, which, as I have already mentioned, is contrary to experience. Nor is it feen in any direction, the confequence of a law affecting both eyes confidered as one or gan, but fufpended when each eye is ufed feparately. For when the two holes appear one, if we pay attention to its fituation, and then clofe one eye, the truly fingle hole will be feen by the eye remaining open, in exactly the fame direction as the apparently fingle hole was by both eyes.

Hitherto I have fuppofed the holes almof touching the face. But they have the fame unity of appearance, in whatever parts of the optic axes they are placed; whether both be at the fame diffance from the eyes, or one be clofe to the eye in the axis of which it is, and the other almoft contiguous to the object feen through them. If a line, therefore, be drawn from the object to one of the eyes, it will reprefent all
the

(43)

the real or tangible pofitions of the hole, which allow the object to be feen by that eye, and the whole of it will coincide with the optic axis. Let a fimilar line be drawn to the other eye, and the two mult appear but as one line; for if they do not, the two holes in the optic axes will not, at every diftance, appear one, whereas experiments prove that they do. This united line will, therefore, reprefent the vifible direction of every object fituated in either of the optic axes. But the end of it, which is toward the face, is feen by the right eye to the left, and by the left eye as much to the right. It muft be feen then in the middle between the two, and, confequently, in the common axis. And as its other extremity coincides with the point where the optic axes interfect each other, the whole of it muft lie in the common axis. Hence the truth of the propofition is evident, that objects, fituated in the optic axis, do not appear to be in that line, but in the common axis.

G 2
Many

(44)

Many other experiments might be menrioned which demonftrate the fame thing. If, for example, the head of a pin, or of a needle, be interpofed between each eye, and any fmall object to which both the optic axes are directed, the heads of the two pins or needles will conftantly appear as one in the commonaxis. When the heads, however, are near to the eyes, this experiment is not fo fatisfactory as the former, fince, in thefe pofitions, they feem as broad tranfparent fhadows, for reafons known to every perfon a little converfant in optics; whereas the holes appear well defined, though almoft touching us. Again; if we hold two thin rulers in fuch a manner, that their harp edges fhall be in the optic axes, one in each, or rather a little below them, the two edges will be feen united in the common axis, and this apparent edge will feem of the fame length with that of either of the real edges, when feen alone by the eye in the axis of which it is placed. If inftead of two rulers we employ two ftrings of different colours, as red and green, the like unity of appearance will

(45)

will be lobferved. But in this experiment it frequently happens, that, contrary to what we might naturally expect, only one of the ftrings is feen at a time. When, however, only one is feen, its apparent fituation is exactly the fame as that of the ftring, compounded, if I may fo exprefs myfelf, of the two when feen together; and hence we have a convincing proof, if any were wanted, that the fingle appearances of objects muft depend upon fome law of vifible direction affecting each eye, when employed by itfelf, in the fame manner as when it is ufed conjointly with the other.*

PRO.
\% Dis Tour expected, that if two objects of different colours were feen in the fame place by both eyes, which however he fays, be was never able to obferre, the colour of the apparently united object-would be compounded of thofe of the two really fingle objects. Memoires des Savans Etrangers, Tom. iv. p. 500. And Dr. Reid mentions exprefsly that it is fo compounded: Inquiry, p. 293. But in all my experiments upon this fubject have remarked, that, when the two objects appeared united, each was feen, notwithftanding, in its proper colour ; the red, for example, appearing as it were through a tranfparent green, and the green, in the fame experiment, as through a tranfparent red. Nor is there any thing in this inconfiftent with the received doctrine of the compofition of colours. For in every inftance of the mroduction of a new colour, from rays ofdifferent colours being at fame

PROPOSITION II.

Jbjects, fitwated in the Commons Axis, do not appear to be in

 that Line, but in the Axis of the Eye, by which they are not feen.
THE facts which demonftrate the truth of this propofition, are both numerous and
 common.

fame time fent to the eye, thefe rays fall upon the fame fentient extremities of the fame nerve. But, in the cafe before us, the differently-coloured rays fall upon the fentient extsemities of two different nerves, which have no communication with each other, ercept through the medium of the brain. We have greater reafon, thetefore, for expecting, that the colours impreffed upon the two eyes, fhould be perceived uncompounded, than there is for two colours being perceived reparately, which are imprefled upon two different parts of the $\mathrm{f}_{\text {ame eye }}$

From the fact of the two colours being thus perceived diftimct from each other, I would infer, by analogy, a mode of argument indeed often fallacious, that if it were poffible for us to hear any one found with one earionly, and another found with tire other ear only, fuch founds iwould in no cafe coalefce either wholly or in part, as two founds frequently do, when hearal at the fame time by one ear; that corfequentiy, if the founds of one mufical inftrument were to be heard by one ear only, and thofe of another, by the other ear only, we cculd have little or no perception of harmony from fuch founds; and that, if in any fucceffion of founds cmitted by one infrument, we were to Wear the $\mathrm{xft}, 3 \mathrm{l}, 5$ th, and fo on, by one ear only, and the 2 d , 4 th, oth, and fo on, by the other ear only, we would be deprived, in a confiderable degree, of the melody of fuch founds, as this

(47)

common. If a piece of wire, or any other fubftance, reprefenting a phyfical line, be placed in the common axis, with one of its extremities near to the vifual bafe, and if both the optic axes be directed to its farther or diftant extremity, inftead of one, two wires will be feen, meeting each other at their farther ends, and gradually diverg ing as they approach the face, till they apparently terminate at the eyes. If the right eye be clofed, the wire which feemed to terminate at the left eye, difappears; and if the left eye be clofed, then the other wire difappears; whofe termination was at the right eye. The real wire, therefore, in the common axis, appears to the right eye to be fituated in the axis of the left, and to the left eye to be fituated in the axis of the right, agreeably to what the propofition afferts.

The following experiments will illuftrate and confirm both this and the preceding propofition.
feems to depend in a great meafure upon a new impreffion being made upon the auditory nerve by one found, before the impreffion of the found immediately preseding has paffed away.

(48)

propofition. Through a piece of card, or pafteboard, let two finall holes be made, the interval between which is fuch, that while a very remote object is feen through one of them by the right eye, the fame object may be feen through the other by the left eye. Make afterward another hole in the card, or pafteboard, exactly in the middle between the two former; and let the object be viewed through them as before. Thefe, or the outer holes, will now appear one, precifely where the fenfe of feeling indicates the middle hole to be; while the middle hole will appear as two, which feemingly occupy the places of the real outer ones. The two appearances of the middle hole, which is placed by conftruction in the common axis, are therefore feen in the optic axes ; and as the left is not feen when the right eye is fhut, nor the right when the left eye is fhut, each appearance is obferved in the axis of the eye, by which it is not feen. As I have fuppofed the diftance between the outer holes to be adapted to the interval of the
eyes when they are directed to a very remote object, the optic axes may, in this cafe, be regarded as parallel to each other. The object, therefore, will fill be fee through thole holes, though the diftance of the card from the eyes be confiderably varied; and at all the different diftances, the fame appearances will be obferved, as thole which have been mentioned.

Again; take three flings of different colours, as red, yellow, and green, and fatten, by means of a pin, one end of each to the fame point of a table. Place now their loofe ends in fuch a manner, that when you look at the pin with both eyes, the vifual bare being parallel to the edge of the table, the red fling may lie in the axis of the right eye, the green in that of the left, and the yellow in the common axis. When things are thus difpofed, and both eyes are directed to the pin, the red and green firings, inftead of appearing feparate, each in one of the optic axes, and inclined to the vifual bafe or edge of the table, will now be len occupying but one place, either

(5°)

together or fucceffively, as was formerly mentioned, and at right angles to the vifual bafe, or edge of the table; in fhort, exactly in the fituation, which the yellow ftring in reality poffeffes; and the yellow ftring, inftead of appearing fingle in the common axis, and perpendicular to the vifual bafe, will now be feen as two, each inclined to the bafe; that feen by the right eye, apparently occupying the place in reality poffeffed by the green ftring, and that feen by the left eye, the place of the red ftring.

PROPOSITION III.

Oijects, fituated in any Line drawn through the mutuat Interfecition of the Optic Axes to the Vijual Bafe, do not appear to be in that Line, but in another, drawn through the fame Interfcction, to a Point in the Vifual Bafe diffant Balf this Bafe from the fimilar Extrenity of the former Line, towards the left, if the Objects be feen by the Righe Eye, but towards the right, if feen by the Left Eye.

TWO cafes of this propofition have already been proved. For it has been hown

(5!)

by the firft propofition, that objects, placed in the axis of either eye, appear to it to be fituated in the common axis. But the common axis is a line drawn thro' the mutual interfection of the optic axes to the vifual bafe, and its termination there is diftant, by conftruction, half that bafe, from the fimilar terminations of the axes of both eyes, to the left of the right axis, and to the right of the left. Again, it has been fhown by the fecond propofition, that objects, placed in the common axis, appear to each eye to be fituated in the axis of the other; and the terminations of both optic axes, at the vifual baie, are diftant half this bafe, from the fimilar termination of the common axis, the left being to its right, and the right to its left.

Let it now be fuppofed that two objects, one placed in the axis of either eye, the right, for inftance, and the other in the common axis, be viewed at the fame time by that eye, it is evident that the virble directions of both will be equally removed to the left, from their real pofitions. But H_{2} fuch

(52)

fuch an alteration of vifible direction, from real pofition, cannot be imagined to happen, with refpect to objects placed in the optic and common axes, unlefs a fimilar effect be, at the fame time, produced upon fuch as are fituated any where betweeri thofe lines, or in their vicinity. Facts confirm this: If a line, for example, be drawn through the interfection of the optic axes to a point in the vifual bafe, exactly in the middle between the terminations there of the right and common axes, its apparent fituation, to the right eye, will be found to have the fame relation to the apparent fituations of lines placed in the right and common axes, as its real fituation has to the real fituations of fuch lines. And the like will be found, by obfervation, to be true of every other line, which may be drawn through the point of interfection of the optic axes to the vifual bafe.

The whole of what has here been faid may be illuftrated and confirmed, by having again recourfe to the experiments with ftrings of different colours, In formerly defcribing

(53)

defcribing thofe experiments, I did not mention all the appearances which occurred upon making them, but only fuch, as had immediate reference to the points then under confideration. When, for inftance, a red ftring was placed in the axis of the right eye, and a green one in that of the left, I faid that they both appeared in the common axis. But this is not the only phenomenon to be obferved with refpect to their apparent number in this experiment. For as the red ftring is alfo feen by the left eye, and the green by the right, two other ftrings become vifible, befide that in the common axis, the apparent pofitions of both of which will be found to be the fame with thofe, which ought to follow from the prefent propofition. Should now a yellow ftring be placed between the two former, as in the proof of the fecond propofition, its appearance to the right eye will bifect the face between the appearances of the red and green ftrings to that eye; and the like will be true with refpect to the appearances of the three ftrings to the left

(54)

cye, agreeably to what the fame propofition teaches us to expect.

I bulieve I :aed fcarcely remark, that, although in moft of the proofs and illuftrations of thefe propofitions, I have confined myfelf to the viifble appearances of lines between the interfection of the optic axes and the vifual bafe, the fame things, however, muft be equally true of thofe lines, when they are produced beyond the interfection, with this difference only, that, while the portions within, feem, to the right cye, to be faither fituated to the left than they really are, but to the left eye farther to the right, the portions beyond the in. terfection will feem to the right eye to the right of their real pofitions, but to the lefteye to the left of them. For it is manifeft, that, if a line be feen by one eye in a certain direction, a prolongation of it muft be feen in the fame direction ; and that, if a line be made to turn upon any point in itfelf, the two extremities muft move contrary ways.

Should the optic axes be parallel to each other, the fame proofs and illuftrations will

(55.)

titll apply, fince we may here fuppore them to meet at an infinite diftance from the vifual bafe. In this cafe, the vifible appearances of lines, drawn from this fuppored poine of interfection to the vifual bafe, will be parallel to the real lines, and diftant half this bafe from them, through their whole extent.

AS I have thus, I think, fufficiently proved, that the apparent directions of objects are governed by a law, different from any which has hitherto been thought so exift, I hall now proceed to fate, in a few : words, in what manner the phenomena of fingle and double vifion with two eyes are dependant upon it.

I formerly mentioned, that, fince an object is never feen double, merely from its being feen at different diftances by the two eyes, the only difficulty in explaining its fingle appearance confifts in fhowing how its two viinble directions may coincide, confiftently with the attending phenomena. But we are enabled to do this, with the utmors

(5^{6})

moft eafe, by the theory I have endeavoured to eftablifh. For, if the queftion be concerning an object at the concourle of the optic axes, I fay it is feen fingle, becaufe its two fimilar appearances, in regard to fize, fhape, and colour, are feen by both eyes in one and the fame direction, or, if you will, in two directions, which coincide with each other through the whole of their extent. It therefore matters not, whether the diftance be truly or falfely eftimated; whether the object be thought to touch our eyes, or to be infinitely remote. And hence we have a reafon, which no other theory of vifible direction affords, why objects appeared fingle to the young gentleman mentioned by Mr. Chefelden, immediately after his being couched, and before he could have learned to judge of diftance by fight.

When two fimilar objects are placed in the optic axes, one in each, at equal diftances from the eyes, they will appear in the fame place, and therefore one, for the fame reafon that a truly fingle object, in the concourfe of the optic axes, is feen fingle.

(57)

Here again, as the two vifible directions coincide in every point, it is not neceffary that the united appearance fhould be judged to be at any particular diftance; that it fhould be referred, for inftance, to the concourfe of the optic axes, where the two other theories of vifible direction are obliged to place it, in oppofition to the plaineft obfervations.

Objects, any where in the horopter, will be feen fingle, becaufe their apparent directions to the two eyes will then completely coincide. And for a contrary reafon, thofe placed in any other part of the plane of the optic axes will appear double. To make thefe things evident, let a line pafs through the point of interfection of the optic axes, and any given object, to the vifual bafe, which is to be produced, if neceffary; and let it be called the line of the object's real pofition. Take afterward, in the vifual bafe, or its production, two points, one on each fide of the line of real pofition, and both diftant from its termination there, half the vifual bafe. Lines drawn from there

(5^{8})

points, through the point of interfection of the optic axes, muft confequently contain the two vifible pofitions of the object. But when this is fituated in the horopter, the line of real pofition will coincide with the horopter, and will not therefore reach the vifual bafe, unlefs at an infinite diftance from the eyes. For which reafon, the two lines, containing the vifible pofitions of the object, muft fall upon the vifual bafe at a like diftance, and muft confequently be regarded as coinciding with each other. When the object is not in the horopter, the two lines of vifible direction will be found, by the fame means, not to coincide.

That I might fimplify a matter, which under my management, muft, I fear, ftill be of difficult apprehenfion, I have, in expreffing the law of vifion, fo frequently mentioned, purpofely confined it to objects fituated in the plane of the optic axes. But in perfons who do not fquint, or whofe eyes are not diftorted by external violence, the two appearances of an object, feen, double, are always, either in that plane;
or in fome one parallel to it ; fo that, if the vifual bafe be parallel to the horizon, a line joining the two appearances will, in every cafe, be alfo parallel to the horizon. Whoever then is able to explain, why objects in the plane of the optic axes appear either fingle or double, may readily give a reafon for the like appearances of fuch as are placed any where elfe. Not to fpend much time, therefore, upon this part of the fubject, I fhall fhortly obferve, that if planes be fuppofed to pafs through the two optic and common axes, perpendicular to that in which they all lie, and if two lines be drawn from any point of the common interfection of the former planes to the vifual bafe, one along each of the per-pendicular planes which pafs through the optic axes, thefe two lines will appear as one, in the perpendicular plane of the common axis; the fingle vifible line, however, poffeffing the fame elevation, in regard to the horizon, as the two real lines: And again, that, if a line drawn from any point of the fame interfection to the vifual

(60)

bafe, along the perpendicular plane of the common axis, it will appear as two, one in each of the planes which pars through the optic axes; the two vifible lines having the fame inclination to the horizon in their progrefs to the vifual bafe, as the real fingle one. In this manner, every thing may be fhown to be true, with refpect to the fingle and double appearances of objects without the plane of the optic axes, which has already been done with regard to thofe placed in it: But farther; fince any point, taken at pleafure, in the common interfection of the three perpendicular planes, appears fingle, the whole of the line of interfection mult appear fo , and likewife every point of a plane made to pafs through it, parallel to the vifual bafe. Such a plane neceffarily includes the horopter, and is the fame as that, which is called by Aguilonius the plane of the horopter.

To exemplify the principal property of this plane, I flall mention an experiment, which at firf I did not underfand, though the
the refult was a direct confequence of my own principles. I fufpended a fine chord at right angles to the horizon, and retreating a ftep or two, I looked fteadily at a point in it, which was upon a level with my eyes. The chord, in thefe circumftances, appeared fingle; but whenever I directed my eyes to any other point of it, either above or below the former, two chords would appear, croffing each other at the part, to which the eyes were directed. In the firft cafe, the whole chord was in the plane of the horopter, but in every other, only that point of it to which both eyes happened to be turned. A conclufion from this experiment is, that no object, which is truly perpendicular to the horizon, will appear to be fo, while our bodies are erect, unlefs we direct our eyes to a point in it exactly upon a level with themfelves.

It was once my intention to fubjoin here feveral inftances, from the moft approved. authors, of inaccurate defcriptions of the fingle and double appearances of objects; in order to fhow, that the theory of vifible

(62)

vifible direction, which I have advanced, is not only confiftent with the univerfally received facts, but that it alfo difcovers to us, fome minute errors, which unguided fenfe has committed upon this fubject ; it being, perhaps, one of the fureft tefts of the foundnefs, as well as one of the chief ufes, of theories in philofophy, that they lead to the knowledge of what, otherwife, might have remained for ever hidden. But fearing I have already proved tirefome, I give up this defign, and haften to the confideration of fome confequences from my theory, which feem to me both curious and important, and which, when firft mentioned, may appear to carry with them their own refutation.
END OF PART IJ.

$$
\begin{gathered}
\text { E S S A Y Y Y } \\
\text { SINGLE VISION WITH TWO EYES. }
\end{gathered}
$$

P A R T III.

Of fome Confequences from the foregoing Theory of Objects
being feen fingle with two Eyes, together with the Explanation of feveral otber Phenomena of Vifion.
IT has hitherto, I believe, been thought by opticians, that, if the pofition of the eye be unchanged, the vifible direction of an object will be the fame, as long as its picture occupies any one point of the retina; and that, in every different pofition of the eye; a picture, which continues to occupy the fame point of the retina, will reprefent its

(64)

object in a different direction. But if the theory be juft, which I have advanced in the preceding part of this Effay, neither of thofe opinions can be univerfally true. For it follows, from what was there mentioned, that if one of the optic axes be kept fixed, and the other be at different times varioufly bent toward it, objects, though fituated in the fixed axis, will neverthelefs change their vifible directions, with every variation of the moveable axis; fince they muft always appear in the common axis, which alters its pofition with every change of the moveable axis: And again, that, if the two optic axes fhould vary their inclinations to each other in fuch a manner, that the common axis, may, notwithftanding, remain fixed, an object placed in either optic axis, and following it in every motion, will poffefs but one vifible direction, in all this variety of real pofitions. That thefe concluitions from my theory, or rather parts of it, are true in fact, I can affert upon the authority of obfervations, and \downarrow fhall now attempt to
trace them both to a common principle, by means of fome experiments, which were inftituted with a very different view.

When we have looked fteadily for fome time at the flame of a candle, or any other luminous body, a coloured fpot will appear upon every object, to which we fhortly after direct our eyes, accompanying them in all their motions, and exactly covering the point, which we defire to fee the moft accurately. Whatever therefore can be proved concerning the apparent direction of fuch a fpot, in any given pofition of the eyes, muft likewife be true in the fame pofition of the eyes, with regard to the apparent direction of an object, fituated at the concurrence of the optic axes; as its pictures muft occupy, in this cafe, the very parts of the retinas, upon the affections of which the illufion of the fpot depends. This being premifed, I fhall now relate one or two obfervations, refpecting the apparent directions of the fpot, and confequently upon thofe of external objects, K which

(66)

Which, as far as I know, have not been mentioned by any other perion.
a. The fpot is always feen fingle, whether the furface, upon which it is projected, be touching the face, or at the greateft diftance from us; and the reafon is plain. For the parts of the retinas, by whofe affections from the luminous body it is occafioned, are thofe likewife which seceive the pictures of objects, placed at the interfection of the optic axes; and as fuch objects always appear fingle, fo muft alfo the fpot. The fact indeed is fo open to obfervation, and its caufe fo eafily fhown, that I fhould fcarcely have thought of mentioning it, had not Dr. Darwin* lately told us, that the fpot is feen double, as often as the eyes are directed to an object more or lefs diftantethan the luminous body which gave rife to it. With refpect to our different affertions upon this point, I fhall only fay, that I have made the experiment, I believe, upward of an hundred times, uniformly with

[^12]with the fame refult; and that, if the foot ever appears double, this mut be from forme cause very wide of a change in the mutual inclination of the optic axes, to which he attributes it. *
2. The foot not only appears fingle in every ordinary polition of the optic axes, but cannot even be made to appear double, by any means whatsoever. If it be projected, for example, upon a piece of white paper, whoever makes the trial will find, that, although, on preffing one eye upward or downward, or to either fides, the paper will be feer double, yet the foot

[^13]
(68)

will always appear fingle, and to poffers its former place on the paper, as feen by the eye, which is not difturbed. Before I knew the refult of this experiment, I had imagined, that, the pofition of one eye being forcibly altered, the external fituation of the fpot, which was fuggefted by the affection of that eye, would likewife be altered, and the fpot by confequence be feen double. As the event, however, was contrary to my expectation, I began to furpect fome caufe of fallacy had been overlooked, which at length I thought might be this, that the fpot had been feen by that eye only whofe pofition was not difturbed, the violence, fuffered by the other, interrupting the due exercife of its. functions. To determine, therefore, whether my conjecture was well founded or not, I made another experiment, which is mentioned in the following article :
3. Having looked fteadily for fome time at the flame of a candle, with one eye only, I directed afterward, with both eyes open, my attention to the middle
of a fheet of paper, a few feet diftant ; the confequence of which was, that a fot appeared upon it in the fame manner, as if I had viewed the fiame with both eyes, though fomewhat fainter. My attention remaining fixed upon the fheet, I now pufhed the eye, by which the fpot was feen, fucceflively upward and downward; to the right and to the left, and in every oblique direction; the fpot however never altered its pofition, but kept confantly upon the middle of the appearance of the paper, perceived by the undiftorted eye; though the appearance of the paper to the diftorted eye, was always feparate from the former, and the fheet confequently feen double. My conjecture, therefore, was proved to be ill grounded, and all fufpicion of fallacy in the former experiment
ceafed.
Now it is evident, from thefe two laft experiments, that the fituation of the fote does not depend upon the bare poffion of the eyes, or elfe, in the former of them, it would have appeared double, and in the latter,

Litter, it would have been moved from the suiddle of the paper, when the only eye 3y minch it was feen was pubsed from its place. Neither can is depend upan the bare polition of the murcles of the eye, as thefe were allo moved in the fame experiments; nor upon any affection whatever of the optic nerve. For fince this lath fubitance is altogether pafive, even in thole motions of the eyes which do ocezfiors a change of the fort's fitaation, every alteration, induced apon the nerve by thofe motions, muft be ultimately afcribed to a change of its poltion; and we have feen, that fimilar changes of its pofition have been produced by extermal violence, without any atteration of tbe for's fituation. 'The apparent fituation of the foot being, therefore, dependant upon none of thefe circumflances, and being at the fame time affeted by the volunitary motions of the eye, it muit, I think, be neceffarily owing ta the werion of the mufles, by which thefe motions are performed. Affuming then as true, that the apparent direction of an object, which iends its picture

(7^{1})

to 2 my given point of the retina, depends upon the ftate of action exiting at the fame time in the mufcles of the cye, and contequentiy, that it cannot be allered, excest by a change in the fate of that ation, I hall proceed to trace to this principhe, feveral phenomena of vilion, particulaly the uniform ninglenelis of the spot already defrribed, and the two facts refpecting tha virble diretions of objects in the optic axis, which were mentioned in the beginning of this part of my Elfay.

The thing ittelf is univerlally acknowledged, thongh a difpute has atien whether cuftom or an original property be the caule, that every voluntary motion of one eye, in perfons who do not fquints is 2ttended with a correfponding motion in the other. Now as all voluntary motions are produced by mufculat action, it follows, that every fate of action, in the mufcles of one eye, has its correfponding fate in thofe of the other, and that the two are confantly conjoined. When, therefore, the foot appears fingle to both eyes in their

(弦)

free pofitions, the fates of action in the mufcles mult be fuch, that the direction, in which it is feen by one eye, coincides with that in which it is feen by the other. But, if we purh one eye from its place, no change is hereby made in the action of its mufcles; for the fate of action in thofe of the free eye is confeffedly the fame as it was ; and it will be attended with a correfponding fate in thofe of the diftorted eye; in proof of which it may be obferved, that, whenever the preffure is removed, the diftorted eye immediately returns to its former pofition, without the aid of any new mulcular effort. The conclufion then is that, fince there has been no alteration in the action of its mufcles, neither ought there to be any in the direction of the fpot feen by it, which is the fact to be explained.

Hence alfo is to be derived the true reafon, why objects appear double, when one eye is pufhed from its place. For as their pictures muft fall upon points of the tefina in this eye, different from what they
formerly poffeffed; and as no change is made, by the diftortion, upon the vifible direction, fuggefted by any part of the retina, the objects will be feen by the preffed eye, exactly in the fame directions as they would have been, before it was preffed, had the pictures then fallen upon the points of the retina, which they now occupy. They mut therefore be nov len in liferent directions by the two eyes, and conequently double. An experiment with a contrary event will confirm this explanation, and likewife flow more clearly, in what I differ from thole who have endeavoured to account for the fame fact. Both eyes being open, let one of them be puffed from its fituation, and let two fimilar objects, fuch as two pieces of money of the fame metal and ftamp, be afterward fo placed, that one hall lie in each optic axis ; there two objects will now appear to be one, and the object fo compounded will be feen in the place, to which the undifturbed eye refers the truly ingle object lying in its axis.

Li Another

(74)

Another inference from this doctrine is, that, if the eyes are in any very unufual pofition with refpect to each other from the action of their own mufcles, as in perfons who fquint, two objects placed in the optic axes, one in each, will not appear as one object; for each will be feen in the direction, which is determined by the fate of action in the mufcles of the eye, upon whofe retina its picture falls; and as this ftate, in. one eye, does not correfpond with that in the other, the directions cannot coincide. This conclufion is verified by the refult of an experiment of Dr. Reid upon a perfon, affected with Atrabifmus, and by that of another, made by myfelf, both of which have been already related.

To explain, therefore, why an object in the optic axis appears at different times in different directions, though the axis be kept fixed, it is only neceffary to fhow, that, whenever this happens, a change, notwithftanding, occurs in the actions of the mufcles which move the eye. With this view, I obferve, that the motions of that

(75)

organ isay be divided into two fets; the firf, confifting of those, by which one eye is carried along with the other, upward and downward, to the right and to the left, and in every oblique direction, the interyal between the pupils remaining confantly the fame; the fecond, of the motions of the pupils, or the anterior parts of the eyes, to and from each other, Suppoling now, that both the optic axes are perpendicular to the vifual bafe; fhould the left axis be afterward inclined to the right fide, the natural tendency of the right axis is to incline equally to the fame fide, fo as to preferve its former parallelifm to the left. This tendency, however, in the right axis to follow the left, may be counteracted by an effort of the mufcles, which regulate the interval of the pupils, until the two axes interfect each other within two or three inches of the face. But it is evident, that the fame degree of mufcular force will be required to retain the right eye in its original pofition, as is neceffary to give to the left eye its motion toward the right ; and

(7^{6})

hence, that, in every different inclination of the left axis to the right, an object placed in the latter, though its real pofition be unchanged, will, neverthelefs, appear in a different direction, in confequence of the different ftate of action in the mufcles of the right eye, which accompanies every new degree of inclination of the axes to each other. As the object muft always appear in the common axis, the alteration, in this example, of its vifible direction, from an increafe of the mutual inclinations of the optic axes, will be from left to right ; but when the inclination decreafes, from right to left. If the right axis be the one which is moved, and the left fixed, the alterations of vifible direction in an object placed in the latter, from fimilar changes in their inclinations, will be contrary to thofe which have juft been mentioned.

The reafon alfo can now be made to appear, why an object, preferving conftantly its place in the optic axis, may, in a confiderable variety of its real pofitions, poffefs but one vifible direction. For, in fuch cafes,

(77)

cafes, the change of its vifible direction, which might be expected to accompany the motion of the eye in the axis of which it is fituated, is prevented from occuring, by a tendency to a change of its vifible direction the contrary way, produced by the mufcular actions which regulate the mutual diffance of the pupils. To know how this happens, fuppore the two optic axes to be parallel to each other, and perpendicular to the vifual bafe; and let a phyfical line be placed in either of them, fo as entirely to coincide with it. This line will, therefore, not only be in reality perpendicular to the vifual bafe, but will, in the prefent ftate of things, likewife appear fo.Incline afterward both the axes equally to the left fide, and it is manifert that the line coinciding, fay, with the rightaxis, muftappear equally inclined. Let now the right axis be kept fixed, and the left be carried back again, and its motion continued, until it be as much inclined toward the right fide, as itfelf was juft before, and as the right axis is ftill to the left fide; the confe-

Fruence will be, that the line in the right axis muft again be feen parpendicular to the viftul bafe; for fuch is the prefent pofition of the common axis. Here then we bave had two oppofite caules of change of apparent direction acting in fucceffion. The mufcular actions, producing the joint motions of the eyes, firt bent the vifible pofition of a line, in the right optic axis, from a perpendicular to the vifual bafe toward the left; and the mufcular actions, which regulate the mutual diftances of the propils, by increafing the inclinations of the axes to each other, moved it afterward, from the left to the right, back again to a perpendicular to the vifual bafe. Let thefe two caufes act together, and it is plain, that no obfervable effect will be produced by either, as long as they are thus proportioned. When they are not fo, only the difference of their forces will be exhibited by the phenomena.

But farther ; to how the extent of this theory of viible direction being dependant upon the actions of the mufcles of the eyes,

(79)

Shall now apply it to the explanation of an infance of apparent motion, which at firs may be thought to furnifh an argument against it. Look with one eye, the other being closed, at any remote object through a mall hole in a card. If you howl afterward fuddenly attempt to view the hole itfelf accurately, with the fame eye, you will observe both it and the diftant object, particularly the latter, to move from left to right, if the right eye be unfed; but if the left eye be the one employed, then frons right to left. Shift now your attention as fuddenly back from the hole to the object seen through it, and both will return to the places they formerly occupied. In this experiment, no real change can be fuppofed to have occurred in the pofition of the diftant object: and had any happened, with refpect to either the eye or the hole, the object would not have been fen through the latter. No other fallacy, therefore, exits here, than that things, which are truly at reft, appear, notwithstanding, to be in motion.

The

(80)

The argument, which I have mentioned may hence be derived againft my theory, is this : The vifible directions of objects, in the optic axis which remained fixed, were formerly faid to be altered, becaufe a new ftate of mufcular exertion was required to keep it fo, in every different degree of the inclination to it of the moveable axis. But in the laft experiment, there feems no good reafon for fuppofing any change in the inclination of the moveable axis to the other ; for, as one eye is clofed, the obvious intention of directing the two axes to the fame object, which is, that we may fee it fingle, no longer exifts. If then an apparent lateral motion be, in one inftance, obferved in objects truly at reft, without any change of the interval of the pupils, may not every other motion of the like kind be alfo independant of the mufcular actions, which regulate that interval ?

It is evident, that this argument refts altogether upon the fuppofition, that in the experiment juft mentioned, no alteration occurs in the interval of the pupils. Now,

(81)

we may be eafily convinced, that forme altération does occur; by applying a finger to the clofed eye, which will; by this means, be felt to move toward the nofe, when we endeavour to view the hole accurately, and from the nofe, when we carry our attention back again to the remote object. Were, indeeds the upinion of Aguilonius * juft; that the mind perceives only thore objects diftinctly, which are fituated at the concourfe of the optic axes, whether they are feen with one or with two eyes; both the neceffity and the degree of the alteration would be clearly alcertained. But as this opinion is not juft, which I mean to prove from experiments in a fucceeding part of this volume, I fhall proceed to give another reafon, and I think the true one, why the interval of the pupils Chould be as much altered, when we look with one eye at objects fucceffively, which are placed at different diftances, as if we were to view them with both.

It is a fact, for which I have the authority of experiments almoft without number, M
though

[^14]
(82)

though I do not recollect to have feen it mentioned by any author befide Dr. Porterfield, that every change of the mutual pofitions of the optic axes is conjoined, in perfons who do not fquint, with a change of the power, in both eyes, to refract the rays of light which fall upon them.When the axes are parallel to each other, the eyes are in their loweft refracting ftate; but in their highef, when the axes are mutually interfected within two or three inches of the face ; every intermediate inclination being alfo conjoined with an intermediate degree of refracting power. Now, fince thofe objects are feen moft diftinctly, the radious pencils from which are accurately: brought to points in the retina, it follows, that, although we employ one eye only, the fame reafon exifts for adjufting its refractive power to their diftances, as if we faw with both. When, therefore, we view a remote: object with one eye, we ufe it in its loweft refracting ftate, which, I have obferved, is conjoined with the wideft interval of the pupils. Should we afterward attempt to

(83)

fee accurately a very near object, the eye will affume its higheft refractive fate, and the interval of the pupils be leffened; the confequence of which muft be, that both the objects lying in the optic axis will aps pear to move in the manner already related.

To finifh this part of my fubject, it feems only neceffary to determine, whether the dependance of vifible direction upon the actions of the mufcles of the eyes be eftablifhed by nature, or by cuftom. But facts are here wanting. As far as they go, however, they ferve to prove, that it arifes from an original principle of our conflitution. For Mr. Chefelden's patient faw objects fingle, and confequently in the fame directions with both eyes, immediately after he was couched; and perfons affected with fquinting from their earlieft infancy, fee objects in the fame directions with the eye they have never been accuftomed to employ, as they do with the other they have conftantly ufed.

Having thus fhown in what directions external bodies are feen, when their fitua-

(84)

tion with refpect to the eye is given, and upon what circumftance the various directions depend, in which a picture upon any one place of the retina can exhibit the object producing it; I fhould render the theory of vifible direction complete, were I now to point out the relative pofitions of the two lines of direction, in which any two different parts of the retina reprefent their objects. To afcertain this, the firft ftep muft be, to find the place of the retina which receives the picture of an object, whofe fituation with refpect to the external eye is known; and if two fuch points of the retina were determined, I think the chief difficulty in this matter would then be overcome. But as it appears to me, that the fructure of the eye has nat yet been fufficiently explained, \$o enable any perfon to take this firft ftep, I forbear faying any thing more upon the fubject.

[^15]
EXPE

EXPERIMENTS and OBSERVATIONS.

ON

SEVERAL SUBJECTS IN OPTICS.

ARTICLE 1.

On Vifitle Pofition, and Vifble Motione
IN the eftimates we make by fight of the fituation of external objects, we have always fome fecret reference to the pofition of our own bodies, with refpect to the plane of the horizon; and from this caufe, we often judge fuch to be at reft, whofe relative places to us are continually changing; and others to be in motion, though they may conftantly preferve, in regard to us, the fame diftance and direction. To give
an inftance, let us fuppofe our eyes firit directed to a ftar near to the horizon; Thould we afterward, by a mere motion of the head, point them to another, fome degrees above the former, this fecond ftar will appear higher than the firft did. Were we now, while the eyes are kept fixed in relation to the head, and the head in relation to the fhoulders, to incline the trunk of the body backward, until we bring the optic axes to a third ftar, this will appear ftill higher than the fecond was perceived to be. If inftead of directing the eyes fucceffively to diaferent objects, the fame object be fuffered to remain at the concurrence of the optic axes in all thefe different pofitions of the body, it is evident, that it muft be feen to move, during the change from one pofition to a nother.
The facts I have mentioned are fo obvious, that I fhould not have fpoken of them, had I not intended they fhould introduce the following queftion: What is there within us, to indicate thefe pofitions of the body? To me it appears evident, that, fince they are occafioned and preferved by combinations

(87)

combinations of the actions of various voluntary mufcles, fome feeling muft attend every fuch combination, which faggets, from experience perhaps, the particular pofition produced by it. But in almof all the pofitions of the body, the chief part of our mufcular efforts is direeted toward fuftaining it againft the influence of its own gravity. Each pofition, therefore, in which this takes place, mult be attended with a feeling, which ferves to indicate its relation to the horizontal plane of the earth; and confequently, if our bodies poffeffed no gravity, or, if the thing were poffible, had we been created unembodied fpirits, but with the fame faculties of perception as we enjoy at prefent, we could no more have judged one line to be perpendicular, and another to be parallel to the horizon, than we can at prefent determine, without fome external aid, which is the eaftern, and which the weftern point of the heavens. I hall now draw from thefe principles, the explanation of a faet, which was firft mentioned by one of the moft ingenious authors
that
that have written upon vifion, but left by him ftill to be juflly accounted for.
"I have frequently (fays Mr. Melvill)* "obferved, when at fea, that, though I " preffed my body and head firmly to a cor" ner of the cabin, fo as to be at reft in ". refpect to every objectabout me, the diffe"r rent irregular motions of the hip, in roll" ing and pitching, were fill difcernible by " fight. How is this fact to be recon"ciled to optical principles? Shall " we conclude that the eye, by the " fudden motions of the veffel, is rolled " out of its due pofition? Or, if it retains a " fixed fituation in the head, is the percep" tion of the fhip's motion, owing to a ver"tigo in the brain, a deception of the ima" gination, or to what other caufe ?"

I need not, I belieye, offer to fhow, that the fact here fpoken of, "is not owing to any of the caufes Mr. Melvill has fpecified. I fhall therefore, in a few words, point out its dependance upon the principles which have juft been mentioned.

It is generally known, I fuppofe, that when a veffel at fea, in the language of failors,

[^16]
(89)

is faid to pitch, its two extremities turn upon its fhorter axis, and that the term of rolling is confined by them to its motiens upour the longer axis. In both pitching and rolling then, the relative pofition of a veffel to a horizontal plane is neceffarily changed. Confequently, though, in the above-mentioned experiment, Mr. Melvill's body and head were at reft with refpect to every object about him, fill a different degree of mufcular effort was required to keep them fo, in every fuch different pofition of the veffel. But each degree of mufcular effort, to fuftain his body againft the operation of its gravity, would fuggeft to him its concomitant pofition with regard to the plane of the horizon; each deviation, therefore, of the veffel from its former fituation, relatively to the fame plane, would be perceived, and the veffel itfelf be feen to move. In fhort, nothing more takes place in this, than in the following experiment: Let a pole be placed upon firm ground, at right angles to the horizon. If, while we are ftanding erect, it be inclined upon its
lower extremity, fucceffively backward and forward, to the right and to the left, there motions muf, without contradiction, be perceived. Suppofe now, our bodies to be fimilarly inclined with the pole, during its different pofitions, fo as to be conftantly parallel to it ; it is evident, that its motions will be as readily perceived in this cafe, as they were, when our bodies were erect; and this is all that happens in the experiment of Mr. Melvill.

Should the neceffity of fupporting the body againft its gravity, by the actions of our voluntary mufcles, be fufpended in whole, or in part, our judgments of the fituation of objects, with refpect to the horizon, muft become irregular and uncertain, notwithftanding any general habit we may have acquired from experience. An inftance of this, I think, I have obferved; for I have frequently remarked during a fea voyage, that, when the wind blew fo ftrongly, and in fuch a direction, as to occafion the veffiel to heel, or lean much to one fide, chords freely furpended from the
roof of the cabin, and kept ftretched by heavy bodies attached to them, have ap= peared to me, as long as I lay in bed, though they were neceffarily perpendicular to the horizon, to decline confiderably from that pofition; while the fides of the cabin feemed, if not perpendicular, at leaft much lefs inclined to the horizon than they were in reality. My body being here fupported by the bed, I was confequently without thofe feelings, which indicate its pofition with refpect to the horizon. Objects therefore appeared to me in thofe fituations, in which I had been accuftomed to fee them. In confirmation of which I may mention, that, when I got up, and ftood upon the floor of the cabin, the chords feemed perpendicular, or nearly fo, and the fides of the cabin inclined; for I was now obliged to exert a proper degree of mufcular force, to keep myfelf upright. What I here fay, however, is from the recollection of things obierved fome years ago, when I had no thought of making the ufe of them I now do ; for which reaton, $\mathrm{N}_{2} \quad I$ may

I may poffibly have committed fome triffing error in fating them; but none, I believe, fufficient to affect the theory they are brought to fupport.

It being my intention to treat, in the prefent article, of feveral facts relative to vifible pofition and motion, which feem to me to need explanation, without :egarding whether or not they depend upon any common caufe; I pafs to the confideration of the apparent rotation of objects, when we have become giddy, by turning ourfelves quickly and frequently round.

Some of the older writers upon optics imagined the vifive fpirits to be contained in the head, as water is in a veffel, which therefore, when once put in motion by the rotation of our bodies, muft continue in it for fome time after this has ceafed; and to this real circular movement of the vifive fpirits, while the body is at reft, they attributed the apparent motions of objects in giddinefs. Dechales* faw the weaknefs of this hypothefis, and conjectured, that

[^17]
(93)

that the phenomenon might be owing to a real movement of the eyes, but produced no fact in proof of his opinion. Dr. Porterfield,* on the contrary, fuppofed the difficulty of explaining it to conffit in fhowing, why objects at reft appear in motion to an eye which is alfo at reft. The folution he offered of this reprefentation of the phenomenon, is not only extremely ingenious, but is, I believe, the only probable one which can be given. It does not apply, however, to the fact which truly. exifts; for I hall immediately fhow, that the eye is noi at reft, as he imagined. The laft author, I know of, who has touched upon this fubject, is Dr. Darwin. \dagger His words are, "When any one turns round ra" pidly on one foot till he becomes dizzy, " and falls upon the ground, the fpectra of " the ambient objects continue to prefent "themfelves in rotation, or appear to li-. " brate, and he feems to behold them for " fome time in motion." I do not indeed pretend

\author{

* Treatife on the eye Vol. ii. p. 426
 \ddagger Philofoph. Tranfact. Vol. Lxxvi. p. 315*
}

(94)

pretend to underfand his opinion fully; but this much feems clear, that, if fuch an apparent motion of the furrounding objects depends, in any way, upon their fpectra, or the illufive reprefentations of thofe objects, occafioned by their former impreffions upon the retinas, no fimilar motion would be obferved, were we to turn ourfelves round with our eyes hut, and not to open them till we became giddy; for in this cafe, as the furrounding objects could not fend their pictures to the retinas, there would, confequently, be no fpectra to prefent themfelves afterward in rotation. But whoever will make the experiment, will find, that objects about him appear to be equally in motion, when he has become giddy by turning himfelf round, whether this has been done with his eyes open or fhut. I fhall now venture to propofe my own opinion upon this fubject.

If the eye be at refk, we judge an object to be in motion when its picture falls in fucceeding times upon different parts of the retina; and if the eye be in motion, we judge

(95)

judge an object to be at rent, as long as the change in the place of its picture upon the retina, holds a certain correfpondence with the change of the eye's pofition. Let us now fuppofe the eye to be in motion, while, from fome diforder in the fyftem of fenfation, we are either without thofe feelings, which indicate the various pofitions of the eye, or are not able to attend to them. It is evident, that, in fuch a flate of things, an object at ref muft appear to be in motion, fince it fends in fucceeding times its picture to different parts of the retina. And this feems to be what happens in giddinefs. I was firft led to think fo from obferving, that, during a flight fit of giddinefs I was accidentally feized with, a coloured fpot, occafioned by looking fteadily at a luminous body, and upon which I happened at that moment to be making an experiment, was moved in a manner altogether independant of the pofitions I conceived my eyes to poffefs. To determine this point, I again produced the fpot, by looking fome time at the flame of a candle; then
then turning myfelf round till I became giddy, I fuddenly difcontinued this motion, and directed my eyes to the middle of a fheet of paper, fixed u_{i} on the wall of my chamber. The fot now appeared upon the paper, but only for a moment ; for it immediatcly after feemed to move to one fide, and the paper to the other, notwithftanding I conceived the pofition of my eyes to be in the mean while unchanged. To go on with the experiment, when the paper and fpot had proceeded to a certain diftance from each other, they fuddenly came together again ; and this feparation and conjunction were alternately repeated a number of times; the limits of the feparation gradually becoming lefs, till, at length, the paper and fpot both appeared to be at reft, and the latter to be projected upon the middle of the former. I found alfo, upon repeating and varying the experiment a little, that when 1 had turned myfelf from left to right, the paper moved from right to left, and the fpot confequently the contrary way; but that when I had turned from right to left, the paper would then move from left to right.

There

(97)

Thefe were the appearances obferved while I ftood erect.' When I inclined, however, my head in fuch a manner; as to bring the fide of my face parallel to the horizon, the fpot and paper would then move from each other, one upward and the other downward. But all thefe phenomena demonftrate, that there was a real motion in my eyes at the time I imagined them to be at reft; for the apparent fituation of the fpot, with refpect to the paper, could not poffibly have been altered, without a real change of the pofition of thofe organs. To have the fame thing proved in another way, I defired a perfon to turn quickly round, till he became very giddy; then to ftop himfelf and look feadfantly at me. He did fo, and I could plainly fee, that, although he thought his eyes were fixed, they were in reality moving in their fockets, firft toward one fide, and then toward the other.

The laft inftance of vifible motion I fhall notice, is one which has been mentioned by Mr. Le Cat, in the following words:*

[^18]Place,
"Place a lighted candle at a moderate dit"tance from a polifhed body of confiderable "c convexity, fo that the image of the flame, " which is feen by reflection from it, may "a appear as a fmall luminous point. The " experiment will fucceed better, if the di"rect rays of the flane be intercepted " from the fight. Clofe after this, one "eye, and view the luminous point in a "c carelefs way, (en revant) that is to fay, " with the eye in a relaxed or dilated ftate. "The point will then be feen enlarged and "radiated. If you bring now your fin" ger to the right of the eye which is open, " and gradually move it toward the left, " in order to conceal the luminous point "from this eye, you will diftinctly perceive "the fhadow of your finger to proceed from " left to right, and to pafs over the point " in a direction, contrary to that which " you gave it. Should you, afterward, " move your finger back from right to left, " and in like manner, if your finger be " moved from above downward, or from " below upward, the thadow will always proceed

(99)

" proceed the contrary way. It is there" fore manifeft, that the foul mult here "fee objects inverted, as their images " in the eye truly are; and that it refers "impreffions to thofe parts of the eye " where it feels them, and not to the places "from which the rays are emitted, as "it does when it poffeffes the means " of rectifying its judgment. Whence "does this happen? Doubtlefs, becaufe " the luminous point has neither a high " nor a low, neither a right nor left fide, " not any well-enlightened object in its " vicinity, to awaken the atiention of the "foul; in fhort, nothing which can de"termine its judgment."
I fhould fcarcely have mentioned this experiment, from any refpec̣t for the authority of its author in optics ; but as Haller* feems to affent to the conclufion he draws from it, that the foul fometimes fees objects inverted; and as the Abbot Derochon, + a member of that learned body, the Aca-

[^19]
(. 100)

demy of Sciences of Paris, has lately, but in my opinion unfuccersfully, attempted to reconcile it to the commonly-received principles of vifion, I think it worth while to fhow, in a few words, that it is a direct confequence of the very doctrine Mr . Le Cat means to overthrow by its means.

It would be proper, indeed, to mention before hand, the opinion of the Abbot Derochon; but this I muft, notwithftanding, omit doing, as it could not be underftood without the figure by which he has illuftrated it. I ṭhall obferve, however, refpecting it, firft, that it requires the fide of the finger next to the eye, to be without the leaft illumination; whereas the experiment will fucceed, whether it be illuminated or not: fecondly, that, ace cording to it, the experiment ought to fucceed equally well, whether the image of the flame in the mirror be feen as a point, or as a furface; though, in truth, it never does fucceed, exceept in the latter cafes : thirdly, that the apparent fhadow of the finger

(101)

finger is always much larger than it ought to be, were it feen by reflection, as the Abbot thinks: fourtbly, that, while the eye, mirror, flame, and finger, remain in the fame pofitions, the fhadow feems at one time larger than at another, owing to the different degrees of relaxation in the eye; but that this, for the reafon juft mentioned, ought never to happen, according to his theory: fifthly, that, agreeably to his own reafoning, the hadow ought to move in the fame direction with the finger, which is the very reverfe of the fact to be explained. But as arguments againft error may be infinitely extended, and as only one folution of a phenomenon can be true, the readieft way of expofing the infufficiency of others, is to exhibit that which is juft.

This, in the prefent cafe, feems to lie upon the very furface of optical knowledge, and has already been given by others, of various forms of the fame fact. When the image of the flame is feen in the mirror as a point, its rays muft be accurately

(102)

rately collected to a focus in the retina; but when leen as a furface, this muft neceffarily be attributed to their focus being either before or behind it ; in either of which cafes, they wll occupy a place upon that membrane of fome affignable dimenfions. In the prefent inftance, their diffufion over a part of the retina, depends on the focus being behind it; for the eye is now, from a condition of the experiment, in a more relaxed ftate than it was juf before, when the rays of the fame object were brought there accurately to a point. The rays, therefore, which go to the right fide of the enlightened furface of the retina, or picture ass I fhall call it, are thofe which enter the eye at the right fide of the pupil, and its left fide is formed of the rays entering at the left fide of the pupil ; and the like muft be true of its upper and lower parts. Should we then hegin to move a finger from right to left acrofs the eye, the rays forming the right fide of the picture mult be firit intercepted. But from the known fact, that the points of an extenal object are always in an inverted pontion,

($1 \mathrm{IO}_{3}$)

pofition, with refpect to the parts of the retina, by the affections of which they are fuggefted, when the right fide of the picture there is effaced, the left fide of the external object it fuggefts muft difappear. And for the fame reafon, if the motion of the finger be continued from right to left acrofs the eye, the other parts 'of the luminous furface in the mirror will fucceffively vanifh from left to right, and thereby furnif the appearance of a thadow pafling over it in that direction.In like manner, it may be fhown, that if the finger proceeds from left to right, from above downward, or from below upward, the hadow muft move the oppofite way.

That this is the true explanation of Mr . Le Cat's experiment, is, I think, plain, both from its intrinfic evidence, and the following confaderations:-If the mirror be brought within four or five inches of the eye, and the candle be fo placed, that the image of the flame mut, from the laws of reflection, be regarded as a mera point; 5 though
though we fhould now view it with the utmoft care, and though there fhould be in its neighbourhood fome well-enlightened object to awaken the attention of the foul; as Mr. Le Cat expreffes it, fill the feeming fhadow will move in a direction contrary to the finger. For the image is now fo near to the eye, that no exertion we can make is fufficient to bring its rays to a point upon the retina; the picture, therefore, upon that membrane will be formed of rays paffing to a focus behind it, which is the only condition neceffary for the fuccefs of the experiment. Again, if a fhortfighted perfon fhould place the mirror at the diftance of fome feet from him, complying in other refpects with Mr . Le Cat's inftructions, he will conftantly obferve the fhadow to move in the fame direction with the finger. For, in his eye, the rays of the image, when at fuch a diftance, muft meet before they fall upon the retina. The right fide, therefore, of the picture upon that membrane, mult be compofed, in this cafe, of rays which
enter the eye at the left fide of the pupil. Confequently, when there are cut off, the left fide of the apparent luminous furface muft difappear, and the fhadow be feen to move the fame way as the finger, when this fucceffively intercepts the rays proceeding from the image to the eve.*

* Scheiner obferved a fact of the like kind (Fundamentum Opticum, p: 33) namely, that, if a fmall hole; made in any fubftance, be held near to the eye, and an opaque body be paffed between them, from right to left, the left fide of the hole will firt difappeadr. Mr. Grey afterward took notice (Philofóophs Tranfact. Vol. xix. p. 286) that a needle he employed in this experiment was feen inverted; from which he fuppofed that the kole, or fomething in it, produced the effect of a concave fpeculum. Mr. Harris, however, fays (Treatife of Optics, p. 14I) that it is not the needle, but its fhadow on the other fide, which is feen, and is the caufe of the inverted appearance. But the rruth is, that the hole is to be regarded as a luminous point, the rays of which fall upon the retina before they are collected to a focus; and hence that the fame appearances muft be here obferved as in the experiment of Mr. Le Cat. In proof of this it may be mentioned, that if the hole be placed at fuch a diftance, that the eye may refract its rays accurately to a point on the refina, no fhadow or image of the needle will be feen; that if the hole be fill farther removed, and the cye be adapted to a lefs difance, the fhadow or image will again appear, but its pofition will now be upright, and its motion the fame way as that of the needle itfelf; and lafly, that, at one given diftance of the hole, either no fhadow will appear, or it will be feen upriglit, or it will be feen inverted, according as the eye may be made to affume different fates with refpect to its power of refraction.

ARTICLEII.

Ox a faypofed Cinfyguente of the Dxrations of Imprefans apon the Rering; and the Efferts of accurate V_{i} fine being tontrined to a finght Point of that MLembrans:

FEW things, at firft, appear more incredible to a perfon, not converfant in optics, than that he does not, at any one time, fee diftinctly a furface larger than the head of a pin. After he is convinced, by proper trials, of the truth of this, he naturally afks, Whence comes it then, that, in ordinary vifion, I feem to view diftinctly fo many objects at once? I go into a crowded flreet, and I fancy I have an accurate perception by fight, of men, houfes, carriages, and many other things, all at the fame time; whence proceeds this illufion?

Only one anfwer, as far as I know, has been given to this queftion. The impreffions made upon the retina by external objects, do not, it is faid, inmediately ceafe

(307)

chafe, along with the reception of the rays which flow from then; and, as in the ordinary mode of vifion, the eye is contrnually paring from object to object, the impreffion left by a former one may be fill vivid, though the eye be directed to another; and hence we may imagine we fee both of them diflinctly, though the picture of only one occupies that place of the retina, which alone furmifhes us with accurate virion.

There are, however, objections to this answer, which dem to me infurmountable. For, in the firfoplace, as the duration of impreffions an the retina muff be greater or left, according to the vivacity of the pictures which accafion them, it follows, that, were this answer jut, the apparent field of our diftinct vifion ought to be in proportion to the quantity of light admitted by the eye; that it Could be contracked, therefore, by every cloud which pates over $u s$ and be enlarged by every burn of funding; that, at midday, it fhould polers its greateft extent, and

$$
P_{2}
$$

ought

(108)

pught from that time gradually to decreafe till the evening, when its limits fhould be nearly the fame with thofe of the real field of accurate vifion. Secondly, fince the coloured fpot, which is produced by looking fteadily for fome time at a luminous body, appears projected upon every object to which we direct our eyes, during its continuance, and as fuch a fpot is neceffarily the fign and effect of the duration of an impreffion upon the retina; every other vifible appearance from the fame caufe ought, in like manner, to have its fituation determined by the pofition of the eye, as far as this may be occafioned by the action of its mufcles. No object, therefore, ought to appear feparate and diftinct from others, if the anfwer were true which I am combatting; but, on the contrary, all thofe to which we fucceffively direct our eyes during the limits of the duration of an impreffion upon the retina, fhould feem crowded into one place; and, confequently, none of them hould be perceived with any tolerable accuracy. -

(109)

Such are the conclufions from the truth of this anfwer. I need fcarcely mention, that they are contradicted by experience.

There is another form of the fame fact, to which, it may be thought, an explanation taken from the duration of imprefions on the retina will better apply; I mean the appearance of a fiery circle, when ang red-hot body is moved quickly round. But it feems, to me, that fuch an explanation cannot even here be admitted. For, if the circle depended upon the caure I have mentioned, it could only be obferved as long as the impreffions upon the retina were alfo difpofed in the form of a circle. Were this broken upon, which it mult be by every movement of the eye, the appearance fuggefted by the laft impreffion would no longer be fo arranged, with refpect to the appearance fuggefted by the prefent impreffion, as to lie with it in the circumference of a circle; and hence fome very different figure would be obferved. Every perfon, however, may eafily convince himfelf, that the circular form of
the fiery appearance is equally perceived, whether the cye be at rett, or be moved ite the smoll irregular manner.

If thele arguments be thought fuffient for the purpoke 1 had in view, it moft alfo follow from them, fince the fact fink remains to be explained, why we appareatly fee fo many objects with equal ditinctuels at once, that pan imprefions upon the retina are proccived as prefert, by neenns of fome higher saculty than that df 手ght. This faculy cannat, with propriety, be named magnefy, as it is effential to a thing's being remembered, that it be perceived as paft, Nor can it be called magination, fince we believe in the prefent exiftence of what it perceives. In one paint of wiew it may feem rather a defect in our stateres, that we frould not be able to diftinguifh berween things paft and prefent. However this may be, I am incined to be of opinion, that many othef phenomeraz both of thought and external finse, are partly to be refolved into the fame general fact. From the prefent inflance of

IT

it, we learn, that feveral souicular attions, may be performed, in fuccedion, during the lear perceprible portion of time.

The queltion I have juft treated, meturally gives rife to another: Would it have been more to our advantage, if accurate vinhon, infead of being confned to one point of the retina, had been poteffee by every paty of that membrane? I anfwet, I think not, for the following reators.

Firft: The diffurion of fuch a propertys over the whole retina would be of litthe ufe, halefs our power of atteration was aifo increaled. For we would otherwife be fitit unable to perceive more than one vinble object at once, with ditinctonels, fince, by our prefent contitution, we are capable of attending accurately to only one thing as a time. The only berefit, indoed, can fee to arife from fuch a condition of the retina, is this, that our attention might be fhifted more quickly from picture to picware on that mombrane, than our eyes can be turned from one external object to another
another. This advantage, however, would be far out-weighed by an inconvenience accompanying it. For it is a well-known fact, with refpect to perception, that we are capable of attending, more or lefs accurately, to any particular impreffion upon the fenfes, in proportion to the force of the other impreffions, which are at the fame time received. But in the fuppofed ftate of the retina, there would be, almoft always, feveral impreflios of the fame ftrength as the one to which we might defire particularly to attend; whereas, in its prefent ftate, the vivacity of the impreffion from the object, to which we turn the optic axis, moft commonly furpaffes, confiderably, that of every other upon the fame membrane ; by which means our attention is rendered lefs liable to interruption.

Secondly; The extenfion of accurate vifiun, to every part of the retina, would deprive us, in great meafure, of the help, which we obtain, at prefent, from the eye, in learning the thoughts of other men.

(113)

As far as I have been able to oblerve, the changes produced by, our internal feelings, upon the ftate of the eye itfelf, are very few, and relate only to the quantity of moifture, which is diffufed over its furface, and the degree of fulnefs in the bloodveffels, which are fpread upon its white and gliftening part. Both of thefe circumftances, however, are fimilarly altered ${ }_{z}$ by oppofite paffions, and, confequently, neither of them can be regarded as the appropriate expreffion of any. The whole variety, then, of the expreffions of feeling, which are juftly attributed to the eye, muft, I think, depend upon its motions. Some of there are the immediate effects of certain paffions; the eye, for inftance, being moved differently in anger and in grief; and fuch may be efteemed as directly expreffive of the paffions by which they are produced. But the far greater number of them do little more, than merely point out the external caufe, or object of the fentiment, which the changes of other parts of the countenance deciare to
$Q \quad$ exint

(184)

exif within uts or diftinguin certain exterinal áppéariñ́cès depenting upon a mental caufe, from fimilar appearances arifing from à différent fourcè. Thus; bluhing is often diftinguificed from an accidental flufh of the cheek, by the eye being turn= daway from the perfon who vecafions it.

That many of the expreffions, whien we attribute to the eye, do in fact depend on changes in other parts of the countennaneè, is evident from the alterations we think induced upon it, by the eyelatiees falling off from difeáre, by a llight inflammation of the edges of the eye-lids, without its being comtriunicated to the eye itfelf, by artificially colouring the eyebrows, and by many other fimilar circumftances: And how effential to the right underftanding of the expreffions of theothet feätures, are the notions of the eyes, when. conduicted with defign, and properly directed, muft be known to every one, who has atterided in difcourfe to the counteniances of very flort-fighted peoples, and more efpecially to thofe of perfons afllitted with blindners

(115)

blindnefs from a gutta ferena, in which the eye, with refpect to its external condition, feems without fault, But whatever is the affiftance the motions of the eye afford, in expreffing our internal feelings, the whole of it mult ultimately be referred to the circumftance of accurate vifion being confined to one point of the retina; fince the intent of thofe motions is, to bring the pictures of external objects upon the moft fenfible part of that membrane. Their neceflity, therefore, would no longer exift, if the fame property were extended, and the advantages we at prefent enjoy from them would, confequently, ceare.

A R T I C L E III.

On the Connection between the different refrective States of the Eyes, and the different Inclinations of the Optic Axes to cach other:

I HAVE mentioned, in my Effay upon Single Vifion with Two Eyes,* that I had been convinced, by experiments almoft without number, that every different degree of the mutual inclination of the optic axes, is attended by a different ftate of the refracting power of each eye. The experiments I there alluded to were chiefly of this fort. I placed a luminous point, moft commonly the reflected image of the flame of a candle from the bulb of a fmali thermometer, at fuch a diftance, that when both my eyes were accurately directed to it, its vifible appearance to one of them was likewife that of a point. Keeping then the axis of this eye fixed, and making the other to crofs it, fometimes before and fometimes behind the luminous point, I found that in
\&.82.
both cafes it appeared as a furface to the eye, in the axis of which it was fituated; and that the more remote from it was the concurrence of the axes, the larger was the luininous furface. Now when the axes met before the point, the apparent furface muft have been occafioned by the rays coming to a focus, previoully to their incidence upon the retina; becaufe, when I paffed my finger acrofs the eye by which it was feen, its parts difappeared, in an order correfponding to the direction in which the finger moved. The difappearance of the parts was in an order, contrary to the motion of the finger, when my optic axes interfected each other beyond the point; which is an equal proof, that the rays, in that cafe, tended to a focus behind the retina.

One application of this fact has already been fhown,* and I fhall now proceed to mention feveral other phenomena in vifion, which it may ferve either in whole; or in part, to explain.
I. It

* Eflay upon Single Vifion, p. 83 .

(115)

1. it accounts for the following beautiful obfervation made by Aguilonius, 中 that if we clofe one eye, and look with the other at an object placed in its own axis, ware will not be able to fee this object diftinetly, unlefs we alfo direct to it the axis of the clofed eye. For in perfons, who are neither preflaytic nor myopic, the refractive ftates of the eyes are fo adapted to the mutual inclinations of the optic axes, that pencils of rays flowing from bodies at moderate diftances are more accurately collected upon the retina, when they are fituated at the interfection of thofe lines, than if their pofition was, in any confiderable degree, either nearer or more remote. The reafon given by Aguilonius himfelf, is, that the mind perceives only thore objects diftinctly, which are placed at the concourfe of the optic axes. But the following experiment proves that the folution is true no farther, than as it coincides with the one I have advanced. Hold, in the axis of either eye, a concave lens, at fuch

[^20]fuch a diftance, that the letters of a books placed a little farther off, may appear thfough it very indiftinct to that eye, when both axes are direeted to any particular word. View afterward the lens itfelf with both eyes, and the letters will immediately become more diftinct. In this experiment then, an object is more accurately perceived when diftant from the concourfe of the optic axess than when fituated exactly in it.

It may be faid, perhaps, that the difo tinethefs of the letters is here to be attributed to the contraction of the pupil, which is occafioned by the eyee being directed to a nearer objeet than they were formerly. But that this is not the cafe, may be made evident by another experiment : Place a convex lens in fuch a man* ner before one eye, that he flame of a candle, at the diftance of two or three feet from the face, may appear indiftinetly terminated to that eye, when both axes are pointed to it. The fame eye being kept gixed, let the tivo axes afterward meet beyond
beyond the flame, and it will now be feen much better defined, though the pupili is atthe fame time become larger. The infufficiency of the explanation of Aguilonius, is. allo proved, by a circumftance frequently noticed in perfons who are very fhort-fighted; for fuch are obferved, when they defire to view an object with much attention, to hold it clofe to one eye, and to turn the other afide ; in this way occafioning the two axes to meet very remotely from the object.
2. The reafon commonly given, why fhort-fighted people view an object with one eye only in the manner above-mentioned, is, that by this means they avoid the uneary ffraining of the mufcles, which muft be employed to direct both axes to the fame point. But it is evident they muft derive from the practice this farther advantage, that, as their optic axes are now parallel to each other, or nearly fo, they, confequently, fee the object in the leaft refractive flate of their eyes. Pencils, therefore, will now have their focufes in the retina,

(121)

the rays of which would have croffed each other, before they fell upon it, had both the axes been directed to the object.
3. Spectacles were long employed, before the manner in which they affifted fight was known. About the year 1601 , this was propofed as the fubject of a queftion to Kepler,* by his principal patron at that time, Ludovic L. B. a Dietrickftein, a learned nobleman of Autria. The firft anfwer he gave was, that convex glaffes were of ufe; by occafioning objects to appear larger. But his patron obferved, that if objects were rendered by them more diftinct, becaufe larger; no perfon would be benefited by concave glaffes, fince thefe diminifh objects. It was not till three years after, that, in confequence of finding out in what manner vifion is performed, he was able to give a juft folution of this problem, though his attention had been directed to it during the whole of that interval. . According to the difcovery he then made, convex glaffes were faid by him to affift the fight of prefR

[^21]
(122)

bytic perfons, by fo altering the directions of rays diverging from a near object, that they fhall afterward fall upon the eye, as if they had proceeded from a more remote one; and concave glaffes to benefit the myopic, by producing a contrary effect upon rays which diverge from a diftant object. Now it is manifeft, that by this theory, to which I bekieve no addition has been made by any fucceeding writer, precifely the fame effects are attributed to lenfes, whether they be employed fingly, or in the form of fpectacles. I am inclined, however, to think, that a difference, fometimes at leaft, exifts here, which has hitherto efcaped motice. For in regard to fuch fpectacles as I have tried upon myfelf, I have always found, that, when I looked with them at objects placed at moderate diftances directly before me, my optic axes. paffed through the glaffes, more inwardly than their centres. With refpect, therefore, to fpectacles for long-fighted people, as the inner halves of their glaffies may be regarded as two prifms, whofe refracting angles face each $\mathrm{c}!\mathrm{fer}{ }_{2}$

(123)

other, to have allowed both my eyes to receive through them pencils of rays from the fame point of an object, the intervals of my pupils muft have been lefs than was neceffary for that purpofe in naked vifion. The confequence of which would be, an increafe of the refractive power of my eyes. Again; as the like parts of glaffes in fpectacles for fhort-fighted perfons, may be efteemed to be two prifms, the refracting angles of which are turned from each other, the interval of the pupils mut have been increafed, and the refracting power of my eyes by this means diminifhed, when I looked at an object through them, which was directly before me. And effects fimilar to what I have mentioned, muft have followed my viewing objects placed obliquely, through glaffes of both kinds. Here then is one advantage, which perfons, who fee with both eyes, either do or may enjoy from fpectacles, but which they cannot derive from ufing fingle glaffes. For if they are prefbytic, they can fee an object by the means of them with a higher refractive ftate
R_{2} of

(124)

of the eyes, than if the optic axes met there, as in naked vifion ; and if myopic, with a lefs. It is alfo worthy of remark, that this advantage does not ultimately tend to increafe the evil, which firft gives occafion for fpectacles. On the contrary, if what every writer upon vifion afferts be true, that we are apt to become flort or longfighted, according as we are much accuftomed to view near or diffant objects, it muff ferve to diminifh that evil. In fupport of this opinion, I fhall mention a fact, with which I have been made acquainted by Mr. George Adams, ${ }^{\text {, }}$ of this place, who is not only well fkilled in the theory of vifion, but, from his fituation, as an artiff, has better opportunities, than moft perfons, of learning fuch matters. The fact is this, that he does not know a fhort-fighted perfon, who has had occafion to increare the depth of his glaffes, if he began to ufe them in the form of fpectacles; whereas he can recollect feveral inftances, where thofe have been obliged to change their concave

* Mathematical Inftrument Maker to the King.

(125)

concave glaffes repeatedly, for others of higher powers, who had been accuftomed to apply them to one eye only. This indeed may have happened by accident; but, at any rate, the fact is worthy of farther attention and inquiry.

It would feem, however, that the longfighted derive more benefit from the alteration in the mutual inclinations of the optic axes, which is produced by fpectacles, than the fhort-fighted. For, as the inner halves of the convex glafes are to be regarded as prifms, with their refracting angles continually increafing as we approach their edges, if two objects, fituated at different diftances, be viewed fucceffively through them, the inclination of the optic axes to each other, when the nearer object is feen, muft bear a higher proportion to their inclination, when we look at the one more remote, than the different inclinations of the optic axes do to each other, when they are fuccefinvely directed to the fame objects, without the intervention of fuch glaffes. Hence the nearer the object

(126)

is, the greater will be the effect of the variation in the inclination of the axes produced by fpectacles with convex glaffes; which is the order of things, the beft adapted to the wants of thofe who ufe them. But with refpect to fhort-fighted perfons, fince the refracting angles of their glaffes, confidered as prifms, decreafe, in proportion as the objects feen through them become more remote; they muff, confequently, derive the leaft benefit from an alteration in the mutual inclinations of the optic axes occafioned by their fpectacles, at the time they moft require it.

If it were afked, then, what is the real foundation of the common reproach againft fpectacles for long-fighted people? I fhould anfwer, a very different one from that, which is, for the moft part, affigned.For the change, in the conformation of the eyes, which renders them ufeful, feems to be one of thofe which nature has deftined to take place at a particular age, and to which there is no gradual approach through the preceding courfe of life. A perfon, for inftance,
inftance, at forty, fees an objcet diftinaty, at the fame diftance that he did at twenty. When he draws near to fifty, the change $\mathbb{\pi}$ have fpoken of commonly comes on, and obliges him in a fhort time to wear fpectacles. As it proceeds, he is under the neceffity of uling others with a higher power. But, infead of fuppofing that his fight is thus gradually becoming worfe, from a natural procefs, he attributes the increafe of the defect in it to his too early and frequent ufe of glafies. Upon the whole, I fhould draw this inference from what has been faid, that no perfon, whofe fight begins to grow long, ought to be, in the leafts, prevented from enjoying the immediate advantage which fpectacles will afford him, by the fear that they will ultimately injure his eyes; not that I think the convexity of each glafs, confidered by itfelf, can do no harm, but that I beiieve the benefit, arifing from the combination of the two, to be at Ieaft fufficient to compenfate it. Whether thofe, who have a tendency to fhort-fight, Thould be alfo early in their employment of. fpectacles,
fectacles, I fhall not pretend to fay ; as there is not the fame ground, from theory; for fuppofing, that the benefit arifing from the combination of the two glaffes is able to over-balance the injury, produced by the concavity of each confidered feparately.

All that I have faid, however, upon the fubject of fpectacles, proceeds upon the fuppofition, that, when objects, placed directly before us, at moderate diftances; are viewed through them, the optic axes penetrate the glaffes more inwardly than their centres. But I can be by no means fure, that the interval of the pupils of other perfons bears the fame proportion; to the interval of the centres of the lenfes in fpectacles, as that of mine does; It concerns thofe, therefore, who are choofing them, to have attention to this circumftance. To me it appears proper, that the glaffes in fpectacles, both for long and thort-fighted people, fhould be fo far afunder, that, when we look at a very remote object directly before us, our optic axes may pafs exactly through their centres. For if the

(129)

centres of convex glaffes be neater to each other, very remote objects will appear double; and if they are more diftant, though the object viewed be infinitely far from us, the optic axes will, however, be inclined to one another, and the refractive power of the eyes increafed; when this may be of differvice; fince there are few eyes which are not able, even without the aid of the convexity of a glafs, to bring parallel rays to a focus upon the retina. If the centres of lenfes in fpectacles, for the hort-fighted, be lefs difant than what I have mentioned, the optic axes muft be bent toward each other, when very remote objects are feen, and the refractive ftate of the eye, therefore, heightened, which is the very reverfe of what is here to be defired. Should the interval of the centres of thofe lenfes be greater, objects at very confiderable diftances will be feen double.

There are two other obfervations relative to glaffes for the fight, which I wifh to add to what I have already faid upon this fubject. The firft is, that the fingle conS vex
vex glaffes with which fome perfons read, muft be very injurious, if they be fufficiently large, to admit the fame object to be feen with both eyes. For as both axes will then pafs through them, one on each fide of the centre, the interval of the pupils will be widened, and the refracting power of the eyes, be diminifhed; fo that here a difadvantage is to be added to the prejudice of the convexity of the glafs, not a benefit to be placed againft it, as in the cafe of common fpectacles for the long-fighted. If, indeed, the defect in fight does not arife from the conformation of the eye, but from a want of tranfparency in its cornea or humours, then fuch glaffes, by magnifying objects, will be ufeful, for the fame reafon, that, in a very faint light, we can read a book of a large print, with more eafe than one of a fmaller. The fecond obfervation is, that if flat-fided prifms were fixed in fpectacle-frames, with their refracting angles toward each other, they would affift the long-fighted fomewhat, without producing the evil which is faid to arife

(13^{1})

arife from the convexity of lenfes; and fpectacles of this kind might, with more propriety, I think, than any others, be called prefervers. A like combination of fuch prifms, but with their angles turned the other way, might, when the object was moderately diftant, be of fervice to the fhort-fighted. But objects, very re-mote, would be made by them to appear double,

ARTICLE IV.

On the Limits of perfect or dijtinct Vifon;

DR. Jurin,* I believe, was the firft who diftinguifhed between perfect and diftinct vifion; confining the former term to thofe cafes, where the rays of a fingle pencil are collected to a fingle point of the retina: and marking, by the latter, the perception we have of vifible objects, when the rays of the pencils, diverging from them, though not collected to fingle points of

[^22]the retina, yet occupy fo fmall portions of it, as to allow the objects to be diftinctly feen, But as few authors have adopted this divifion, I fhall, in the prefent article, ufe both terms in the fenfe, which he has appropriated to the firtt. Neither of them is indeed free from objection, fince bodies to be diftinctly or perfectly feen, not only require, that their pictures fhould be accurately formed upon the retina, but that they fhould fall upon a particular part of it.

Although it has long been a fubject of inquiry, within what limits of diftance objects are diftinctly perceived by fight, yet the only experiments I have met with in books, which have been made, with any tolerable fhow of accuracy, to determine this matter, are thofe of Dr. Porterfield. I thall not here fay what they were, as his Treatife is in every body's hands, but fhall only mention, that the principal conclufions which he drew from them were, firft, that objects could be diftinctly feen by him, that is, the pencils of rays which

(133)

which came from them could be accurately collected to points upon the retina, when their diftances from his eye did not exceed twenty-feven inches, and were not lefs than feven; and ficondly, that, as often as the axes of both eyes were directed to any one point, fituated within thofe diftances, the rays proceeding from it had their focus in each retina.

As the refults of fome experiments which I have made upon the fame fubject, differ from thefe conclufions of Dr, Porterfield, I have read over what he has written upon the matter with more than ordinary attention, and I think I can thence fhow reafon, why they hould not be received without caution. For, in the firft place, his experiments are related fo circumftantially, and with fuch an appearance of accuracy in the making of them, that you would fcarcely fuppofe he left the leaft poffible room for error. And yet after finifhing his account of them, he tells us, that he would have repeated them with more care and exaclnefs, , had he not been

[^23]
(134)

been interrupted. Secondly, his experiments were made upon one eyc only, though his conclufions apply to both eyes; an inaccuracy which gives occafion to fufpect others. Laftly, he fays, that he could not fee an object diftinctly at the diftance of feven inches, unlefs both axes were pointed to another object, at only half that diftance. Had he then directed both axes to an object feven inches diftant, which he does not mention he ever did, it muft confequently have been feen indiftinctly; and yet one of his conclufions feates, that objects, diftant from about feven, to about twenty-feven inches, were always difinctly feen, when the axes of both eyes were directed to them. Such are the reafons which lead me to think, that the whole of the difference, between the refults of the experiments of Dr. Porterfield and myfelf, is not to be attributed to a difference in the fructure of our cyes.

The experiments, which I made upon this fubject, were with luminous points. They proved to me, firft, that, when both optic
optic axes are directed to any object, placed at a lefs diffance from my eyes than about feventeen inches, my vifion of it by the left eye is indiftinct, from the rays of light tending to focufes behind the retina; $\int e$ condly, that my vifion by the fame eye is perfect, if the object feen, and to which both axes are turned, be from about feventeen to about nineteen inches diftant; tbirdly, that the vifion of my left eye becomes again imperfect, if the object be moved to a greater diftance than that of nineteen inches, the rays being now collected to focufes, previoully to their falling upon the retina; and fourtbly, that I have, by my right eye, imperfect vifion of all objects, to which I direct both axes, unlefs their diftances be fo great, that the rays of each pencil, proceeding from them, may be regarded as parallel.

A conclufion is furnifhed by thefe experiments, fimilar to one, which was drawn by Mr. Delahire, * from fome made by himfelf; namely, that each eye fees objects dif-

[^24]$$
(136)
$$
diftinetly only at one diftance; as I take for granted, that, in every cafe of ordinary vifion, both axes are directed to the object which is viewed. But Mr. Delahire drew a fecond conclufion from his experiments; which he feems to have regarded only as another expreflion of the firft, but which, in truth, includes a very different fact. It was, that the refractive ftate of the eye is always the fame, whether we look at a very near or a very diftant object. The following obfervations, however, will prove the contrary, at the fame time that they fhow, in what I farther differ from Dr. Porterfield.
I. Though an object, to which both axes are pointed, does not appear diftinct to my left eye, unlefs it be from about feventeen to about nineteen inches diftant; nor to my right eye, unlefs it be at a very confiderable diftance; yet I find, that when the axes are made to meet at a point, about two inches diftant from a line connecting the two pupils, which however cannot be cffected without much ftraining, my left

(i37)

eye will now fee an object diftinctly; which is only about feven inches from it, and my right eye will at the fame time fee an object diftinctly, the diftance of which is about ten inches. I find alfo; that my left eye is made to fee an object] diftinctly; though placed more than nineteen inches from it, if I direct both axes to a point ftill more remote.
2. I formerly mentioned, that every degree of the mutual inclination of the optic axes is attended, by a particular ftate of the refracting power of each eye. But I muft now remark, that thefe flates are fometimes fubject to flight variations, while the inclinations of the optic axes to each other remain the fame. For I find, that, when a luminous point, to which both axes are turned, is diftinctly feèn by my lefteye, I can, by certain efforts not eafily to be defrribed, but without changing the, pofition of either axis, make it afterward appear as a furface, and this too, at one time, from the rays coming to a focus toe fion, and at another, too late, for perfect
tiffon.* One inftance of thefe variations deferves to be minutely defcribed, as it proves, that the refractive power of the eyes is fubject to greater changes, than what are fhown by any experiments I have met with in authors. When I look attentively at a bright far, with the optic axes parallel to each other, it appears to my left eye a furface of fome extent, and to my right eye, though not a point, yet a furface of very fmall extent, as fmall as the fphericity of the cornea and eryftaline, the various refrangibility of the different kinds of light, and the width; of the pupil at night, can be fuppofed to allow; for I find, that, if I now pafs a needle acrofs the axis of the right eye, its madow will not be feen, But fhould I, after

* The variations, however, feem produced in fuch a manner, that the middle of the fet belonging to one degree of the mu-i thal inclination of the optic axes, is always different from the middle of the fet "elonging to another degree of their inclination ; and that, when no other effort is made, than to direet both axes to the fane object, the eyes always affume the middle flate of the refractive power, which accompanies that paxticular inclination of the axes. No argument, therefore, can hence be derived againft the applications I formerly made of the general fact; refpecting the connection of the refractive ftates of. the oyes with the mutual inclinations of the optic axes.

(. 39)

after this, withdraw my accurate attention from the far, and view it in the fate of fight we have, when we are faid to be in a reverie, in which, though our eyes are open, we are yet fcarcely confcious of feeing furrounding objects, the appearance to the right eye expands itfelf, and if a needle be again paffed before this eye, its fhadow will be obferved to move over the ftar, in a direction contrary to that of the needle itfelf; a fure indication that the rays of light now tend to a focus behind the retina. In the fame fate of things, the appearance of the far to the left eye contracts, and if a needle be held before the eye, no fhadow is feen; a fign that the rays are collected to a focus on the retina; whereas they had formerly croffed one another before they reached that membrane.

Upon the whole then it is manifeft, from the experiments I have related, that my left eye can collect to focufes in the retina, rays which proceed from objects at every diftance whatfoever, not lefs than feven inches; that my right eye can collect to foT2.
cufes

(140)

cufes in the retina, rays which proceed from objects at every diftance whatfoever, not lefs than ten inches, and even fuch as are fomewhat convergent, fince it can make thofe, which are parallel, to meet before they fall upon the retina; and laftly, that, while both the optic axes are directed to a point within the limits of diftinct vifion, the rays proceeding from it are never accurately collected to focufes in both retinas, and fcarcely ever to a focus in either retina. Thefe are likewife the principal circumftances, in which my experiments differ in their refults from thofe of Dr. Porterfield.

In making fuch experiments with luminous points, one or other of two appearances very conftantly occurs, neither of which, as far as I know, has been fpoken of by any preceding author. The moft proper way of mentioning what they are, is, perhaps, to fhow what ought to happen in thofe fituations, in which they are obferved.

$$
(1,51)
$$

When a beam of white light paffes, obliquely, from one medium into another of different refractive power, its varioully coloured rays muft begin to diverge from each other, at the point of the beam's incidence upon the latter medium. In achromatic telefcopes, the mutual feparation of thefe rays is checked, and its farther ipcreafe prevented, before it becomes perceptible to fenfe, by the contrary refractions which they undergo, from paffing, fucceffively, through the different parts of the object-glafs. Hence, fome have imagined, that, fince objects, in ordinary vifion, are feen without colour, as far as this depends on the refractions of the eye, nature has furnifhed us with an inftrument, conftituted upon principles fimilar to thofe of the object-glafs of an achromatic telefcope. But every one, the leaft acquainted with the ftructure of the eye, mult know, that this cannot be the cafe, as the refractions in it are all made one way.* And there are experimental proofs

* There are indeed fome exceptions to this, but not of fufficient confequence to affect the prefent argument.

(142)

proofs, that compounded light is always feparated into its parts, by paffing through the eye. For if we interpofe any opake fubftance between us and a luminous body, fo that only a very fmall portion of this may remain vifible, it will appear to confift of three differently coloured parts, red, yellow, and blue. The reafon, therefore, of objects being, for the moft part, feen colourlefs, muft be elfewhere fought.*

Now let us fuppofe, that a luminous point is the only object which is feen at any one time ; fhould the focus of its mean refrangible rays be anterior to the retina, the middle of its picture upon that membrane muft be chiefly compofed of the lefs refrangible rays; and this muft be the reafon, that, when I look attentively at a bright ftar with my left eye, the centre of it always appears of a light orange colour. As the beams, however, from the luminous point, which enter the eye near to its axis, fuffer but

[^25]
(143)

but little refraction, the brightnefs of their white light, will, in great meafure, overo power the colour given to the middle of ${ }^{3}$ the picture upon the retina, by the lefs refrangible rays of thofe, which enter the eye at a diftance from its axis. Were you then to intercept the former beams, the effect I have mentioned of the latter; muft be more obfervable : and hence it is; that when I place a pin or needle between my eye and a luminous point, the rays of which come to a focus before they fall upon the retina, the fhadow, inftead of appearing black, is always of a red or deep orange colour; which is one of the phenomena refpecting luminous points, to which. I have alluded.

On the other hand, fhould the focus of the mean refrangible rays of a luminous point lie behind the retina, the middle of the picture there will be principally formed of the more refrangible rays; and if the beams, which enter the eye near to its axis, be alfo in the prefent cafe intercepted, the effect of the latter rays, in giving colour

(144)

to the middle of the picture, will confequently be rendered more evident. Hence it is, that, when a luminous point is not fufficiently remote for diftinct vifion, the feeming fhadow upon it, occafioned by any fmall opake object held before my eye, is always blue; and this is the fecond of the appearances, which I faid are frequently to be obferved, in experiments upon luminous points.

THE END'。

QP
路

[^0]: * Aguilonii Optica, p. 110, 148, 33I, 344*

[^1]: * This objection is made to Dr. Smith's theory by Dr. Reid, Who feems to have overlooked the anwer. Reid's Inquiry iato the Human Mind, 8ro. p. 332.
 ${ }_{3}^{+}$Vol. I. P. 4 6.

[^2]: * Dr. Reid attributes to Bifhop Berkeley the opinion, that objects appear fingle totwo eyes, from an experienced connection between

[^3]: * Vol. I. p. 48. Dr. Smith however has, from the influence of fyftem, I fuppoie, miftaken this fact ; for the button is felt double, when preffed in the manner above mentioned, though we thould not be in the dark, and hould even fee it to be fingle.

[^4]: *Vol. II. Rerearks, p. 86.

[^5]: - Vol. I. p. 48.

[^6]: *. Inquiry into the Human Mind, c. v'. fect. I_{3}.

[^7]: * Varolii Anatomia, simo. p. 16 .
 + De Oculo, sto. p. 127°
 t Elementa Phyfiologhe tom. v. p. 403:
 Winhow's Aratomy, vol. ii. p. 379 . Englifh edition, 850 .

[^8]: * I am of opinion, that this line, or at leaft the line which we turn to objects when we fee them mof difinctly with one eye, is not the common axis of the globe and cornea. For ifinci, that, when I place the flame of a candle between either of my eyes, and a plane mirror, in fuch a manner that it may conceal its own image in the mirror from the fight of that cye, or rather that it may be a little below this image, but in the fame vertisal plane with it, the image of the flame, feen by reflection from the cornea, does not appear upon the middle point of this coat, but upon that peint of it which is oppofite to the centre of the pupil.

[^9]: * Inquiry into the Human Mind, chap, 6. fect. 3 \& 20.
 + Ibid. chap. 6. fect. I2.

[^10]: * Smith's Optics. Vol. 2. Remarks, p. 30: $\$$ Inquiry, chap; 6. fect. 16 .

[^11]: * It mar befaid, perhajss, that as I do not defne the pointz of the comeas, upon which the optic axes Sall, Icannot, with propriety, defare the line which connects them to be dividen. To this I anfwer, fout it is not necefary for the purpoie I have mentioned, that they thould be defind; if it he granted to me and I think it cannot be refufed, that apon whatever point of the right comea the right axis fall, the left axis mill fall upors a fimilarly fituated point of the laft cornea; that is, if this point of the right cornea be at any given diftance from ito middle, and upon the infide of it, the correfponding point af the left cornea will be at the fane dilance from the midule of this, and alro upon its infle. Whaterer extent, therefore, the line connecting thefe places of the comeas may fave, its middie point will be the fame.

[^12]: * Philofoph. Traniad. for y 786 , p. 328. Dr. Darwin indeed, fays; $0 .{ }^{\text {' }} 34 \mathrm{r}$, that Buffon had obierved the fame fac: but it is evi* dent be has miftaken that author's meaning.

[^13]: * The only way, in which I think it poffible for the foot to appear double, confidently with the univerfaty acknowledged fact, that an object at the interfection of the optic ares is always feer single, is this, that, when the intersection is near to the face, an object placed in it fall not fend its pictures to the fame points of the tron retinas, 3 is it does, when the interfection is more remote. And fuck 1 once hoped to find to be the cafe; for I had formed, upon the fuppofition of its truth, a more plausible account of the manner in which the eyes are fitted to receive, fucceffively, pistures equally diftinct from objects at different diftances, than any I had met with But, after many experiments to afcertain the matier, I was obliged to return to the common opinion, that the picture of an object in the ontic axis, whatever be its distance from the eye, is always received upon the fame point of the retina?

[^14]: * Optica, p. 8 .

[^15]: ENDOF THE ESSAY UPONSINGLZVISION WITH TWO KYES.

[^16]: * Edinburgh Phyfical Effays, vol. ii. p. 89.

[^17]: * Curfus Mathemat. Tom. ii. p. 422.

[^18]: * Traitè des Sens. p. 419.

[^19]: * Elementa Phyfiplogiæ, Tom. v.'p. 4.79.
 + Memuires de Phyfique, p. 65.

[^20]: + fifuiboni Optica, p. 83.

[^21]: * Paralipomena in Vitellionem, p. 200.

[^22]: *. Effay on difinct and indiftinct Vifion.

[^23]: is Treatife on the Ere, Vol, I. p. 423.

[^24]: *. Meracires de Mathematique et de pbyque, 4to. p. 298:

[^25]: * Dr. Mafkelyne has very learnedly treated this fubject in the Philofophical Tranfactions, Vol. lxxix. part 2.

